Полипропиленовые трубы чем красить: Можно ли красить полипропиленовые трубы: советы

Как покрасить и защитить трубы отопления

Покрасить трубы отопления – типичная задача, которая возникает там, где система не заменена на варианты из пластика, нержавейки, меди. Как привести в порядок обычную систему, чтобы она имела наилучший вид? Еще важна надежность защиты, краска должна быть устойчивой к температурам и внешним воздействиям, не привносить вредностей внутрь дома. Поэтому к ее подбору и нанесению требуется подойти тщательно…

С трубами все серьезно…

Покраску и защиту труб отопления лучше делать по правилам, в противном случае буду повышенные расходы.

Если не сделать качественную защиту стальных труб с самого начала, то под слоем краски металл будет ржаветь. Это проявится вздутием, отслоением слоя, выступлением ржавчины местами. Тогда необходимо будет сдирать механически ржавчину и былую краску, после чего… делать по правилам – произойдут тройные трудозатраты и денежные расстройства.

Интенсивность коррозии будет зависеть от среды нахождения, от влажности. Снаружи, стальные детали, которые подвергаются воздействию осадков, окисляются интенсивно. В контакте с грунтом этот процесс еще быстрее.

В помещении, особенно в сухом и отапливаемом, этот процесс замедленный. Но наверняка многие видели ржавчину на радиаторах и трубах, даже на покрашенных. Как обработать эти детали надежно, особенно, если речь идет об эксплуатации в неблагоприятных условиях?

Покраска стальных деталей

Сталь и чугун красятся по следующей схеме.

  • 1. Механическое удаление ржавчины, старой краски, вычищение загрязнений до металла, обезжиривание растворителем.
  • 2. Обработка всей поверхности и внутренних полостей ингибитором ржавчины. Чаще используют ортофосфорную кислоту. Это важный пункт. При реакции кислоты с окислами железа, образуются устойчивые вещества в виде пленки на детали.
  • 3. Грунтовка металла. Грунт – особый состав, который прочно связывается с поверхностью детали, входит в мельчайшие неровности. Образует прочную защитную пленку. Рекомендуется использовать только качественные составы.
  • 4. Покраска. Слой краски должен быть устойчивым к внешним воздействиям. Желательно от того же производителя, что и грунтовка для лучшего сочетания.

Дополнительная информация — последовательность выполнения работ при покраске и защите элементов системы отопления приведен на рисунке.

В чем особенность защиты отопления

Отопительные трубопроводы и радиаторы нагреваются. При этом находятся в жилых помещениях. Следовательно, составы, которые можно применить для окраски отопительной системы, должны быть:

  • эластичными, не трескаться при постоянных температурных расширениях. Не терять адгезию с металлом.
  • не выделять каких-либо составляющих, в том числе и при нагреве.

Но мало того, для наружных работ, составы должны быть еще и устойчивыми к воздействию замораживанием, если трубы зимуют без нагрева в открытом виде. А также – к осадкам с агрессивной кислотно-щелочной водицей, и к воздействию ультрафиолета, если нет наружной дополнительной защиты.

Для наружного применения защита должна быть особо устойчивой к электрохимическим реакциям, а для грунта — также к значительным механическим воздействиям.

Что применяют для труб

К радости потребителя, некоторые современные покрасочные средства отвечают выше перечисленным требованиям. В продаже можно найти специальные составы для разогревающихся отопительных систем.

Как правило, для труб и радиаторов внутри дома применяют поверхностные краски на водной основе. Они считаются наиболее безвредными и не пахнут. Но наполнители могут быть различными.

Для наружных работ, атмосфероустойчивыми могут быть составы на масляной основе. Сохнут они дольше, но там важнее сопротивляемость созданной ими пленки к воздействию агрессивных вод. Они могут наносятся на различные трубы. Правда защиту теплотрасс снаружи зданий и в грунте осуществляют несколько иными способами.

Теплотрасса снаружи и под землей

Трубопроводы отопления снаружи здания как правило теплоизолируются. На них, помимо обычной защиты от коррозии, устанавливается оболочка из утеплителя. Тонкие трубы, которые применяются в частных домах, чаще одевают в скорлупу из плотного пенополиуретана или экструдированного полистирола. Эти теплоизоляционные материалы водоотталкивающие, даже если произойдет протечка сквозь внешнее покрытие, они вероятно предотвратят дальнейшее распространение влаги.

Скорлупа надевается на трубы в шахматном порядке, а стыки проклеиваются строительным скотчем.

Поверх теплоизоляции наклеивается с помощью не агрессивного к полистиролам состава кожух из рубероида, который выступает в качестве долговременной защиты от влаги.

Но большие диаметры теплоизолируются чаще рулонной стекловатой. Такой способ дешевле. Поверху обустраивается битумно-рубероидная обложка.

Сами же трубы под теплоизоляцией обрабатываются обычно – ингибитором ржавчины и качественной грунтовкой.

Новая серебрянка для труб

Один из надежных методов защиты труб отопления, который можно применить в домашних условиях – покрытие цинково-полимерным составом. Так называемое «холодное оцинкование». Это совсем не то, что называется оцинковкой в заводских условиях, но тем не менее, – защиту рекламируют как прочую. В полимерно-эпоксидный состав добавлена цинковая пыль, с величиной стружки менее 10 мкм. Подойдет как замена обычной «серебрянке», как вариант, хоть и не дешевый, но в качестве интересного эксперимента….

Какие составы применяются – чем красить?

В настоящее время широко применяются для покраски труб следующие серии красок

  • Алкидные эмали, например
    — Alpina Heizkorperlack
    — Aura Luxpro Thermo
    — Dufa
    Но цвет долговременно сохраняют не важно, со временем выцветают, желтеют…
  • На основе акрила
    — Eskaro Element
    — Maxima Akril
    Яркие, устойчивые. Но могут быть чувствительными к моющим – нужно читать инструкцию. Также слишком горячие трубы централизованного отопления (90 град и выше) этими составами покрывать не следует – размягчаются…
  • На основе кремния – кремнийорганические (КО) эмали
    — Цельсит-500
    — КО-811к ELCON
    Температуро устойчивые, яркие. Но вопрос в экологичности – нужно проветривание во время нанесения и после, — внимательно изучайте инструкции к краскам, и определяйте область применения.

Эти и другие покрытия для отопительных труб и радиаторов можно встретить на полках магазинов. Правда они являются лишь частью необходимой защиты металла от коррозии. Полная покраска включает в себя и процессы, которые были перечислены выше.

инструкция своими руками, выбор краски без запаха

Процесс покраски труб должен учитывать специфичность предмета – по магистрали циркулирует теплоноситель. Какие инструменты необходимо использовать для ее нанесения? В каких условиях должна проводиться покраска? Ответы на все эти вопросы – в нашей статье.
Посредством окраски труб решается сразу несколько проблем:

  • трубы, доставляющие внутрь и отводящие теплоноситель из радиаторов, защищаются от коррозии;
  • магистраль системы отопления приобретает привлекательный облик, соответствующий оформлению интерьера.

Этапы покраски

Следует учитывать то, что даже самая качественная и дорогая краска не даст гарантии успешного результата, если поверхность трубопроводов не была правильно подготовлена.

Подготовка к покраске

Покраска труб должна начинаться только тогда, когда они очищены от грязи, старой краски, отшлифованы, обезжирены и загрунтованы. Предлагаем вам ориентировочный алгоритм действий по подготовке отопительной магистрали к окрашиванию.

  • удалите с труб и радиаторов всю грязь и пыль с помощью влажной тряпки или ершика;
  • очистите поверхность до металлического блеска наждачной бумагой или специальной насадкой на дрель;
  • ошкуривание и обезжиривание уайт-спиритом или другим растворителем;
  • обработка антикоррозийным грунтом.

В ходе подготовки труб под покраску можно использовать некоторые советы. Размягчить старую краску и ржавчину можно химической смывкой, а затем без труда удалить шпателем. Использовать грунтовку лучше на алкидной основе, т.

к. она улучшит адгезионные характеристики металлической поверхности, и краска будет лучше сцепляться с поверхностью.

Если вы не пренебрегли ни одним из этапов подготовки, можете быть уверены, что покраска труб отопления сделает их привлекательными и надежно защищенными от коррозии.

Как проводится окраска?

Перед тем как покрасить трубы и радиаторы, застелите пол под магистралью отопления пленкой или старыми газетами. Стену за батареей можно оклеить малярным скотчем или защитить листом плотного картона.

Работайте небольшой кистью с мягким ворсом, валиком из поролона или краскопультом. Выбор инструмента зависит от ваших умений и конкретных особенностей данной отопительной магистрали.

Сначала следует покрасить верхние части трубопроводов и батарей. Низ трубы красят в последнюю очередь, чтобы не испортить его подтеками и разводами. Если необходимо нанести несколько слоев краски, выдерживайте время на сушку каждого.

Если вы используете краскопульт или аэрозольный баллончик с краской, процесс покраски пойдет намного быстрее. Однако предварительно изучите инструкцию по эксплуатации распылителя и выясните, с какого расстояния допускается перенос пигмента.

Как выбрать краску?

Конечный результат ваших трудов зависит не только от того, как краска нанесена на металл, но и от того, насколько она качественная и подходящая для подобных работ.
Краска для отопительных труб должна отвечать следующим требованиям:

  • термостойкость от 100°С;
  • устойчивость к истиранию и агрессивным чистящим средствам: трубы и радиаторы довольно часто приходится мыть;
  • нетоксичность: в процессе нагрева красочное покрытие не должно выделять в воздух запаха и вредных веществ.

Виды красок

Сегодня на рынке можно найти краски с разным компонентным составом.

Акриловые эмали производятся на основе органических растворителей, поэтому покраска труб неизбежно сопряжена с неприятным резким запахом. Однако результатом будет прочное глянцевое покрытие, которое сохранит свою целостность и привлекательный внешний вид надолго.

Алкидные краски тоже пользуются большим спросом в деле преображения труб и радиаторов. Минусом их является резкий запах не только в процессе покраски, но и в эксплуатации. Зато слой получается действительно прочным. Алкидные краски отличаются богатством оттенков.

Водно-дисперсионные эмали привлекательны тем, что не требуют много времени для сушки труб и радиаторов, а сама покраска проходит без выделения резкого запаха, ведь в составе данных эмалей нет едких растворителей.

Обзор ведущих производителей

И отечественные, и зарубежные производители лакокрасочных материалов предлагают самый широкий выбор термостойких эмалей для труб и батарей. При этом цена нередко зависит не только от качества материала, но и от известности бренда.

Большой популярностью пользуется краска Radiator Paint (Голландия). Ее можно отнести к разряду «классики». Покраска дает результат в виде безупречно белой поверхности с глянцевым блеском.

Трубы и радиаторы можно покрасить и эмалями Heizkorperlack и Mipatherm 600 производства Германии. Ее можно наносить без предварительной подготовки поверхности. Краски данной марки сохнут достаточно быстро, запуск системы отопления допускается уже через 3-4 часа после завершения малярных работ.

Еще одна известная марка алкидных эмалей – Radiator. В паре необходимо приобретать разбавитель «Юнит» («Юнит Спрей» – для краскораспылителей), который добавляется в рабочую смесь в объеме 5%. Будьте готовы к тому, что если покрасить ей трубы в светлые тона, то в процессе эксплуатации они могут немного пожелтеть.

Состав Elementfarg Alkyd (Швеция) – это средство 2 в 1: его можно использовать и как грунтовку, и как краску. Таким образом, вы сэкономите средства на покупку антикоррозийного грунта и время на отдельное грунтование и окрашивание. Окраска с применением Elementfarg Alkyd обычно ведется в 2 тонких слоя.

Другое средство из того же разряда – эмаль «УНИПОЛ®» (Т-марка). Она тоже сочетает в себе свойства грунта и термостойкой краски. Покрытие выдерживает нагрев до 200°C. Поверхность получается гладкой и матовой. Покраска должна вестись только по холодному металлу, можно прямо на старую эпоксидную или алкидную эмаль. Удобнее работать краскопультом в 2-3 слоя.

Эмаль ВД-АК-1179 обладает высокими адгезионными показателями при работе с разными металлами и грунтовками. Покрытие получается гладким, глянцевым, устойчивым к пожелтению под действием высоких температур.

Руководство по продукту: Руководство по продукту для трубопроводов питьевой воды

Если не указано иное, информация о составе продукта и информации об опасности для здоровья основана на исследованиях, проведенных Healthy Building Network для общих профилей продуктов, отчетов и блогов. Приведены ссылки на соответствующие ресурсы.

Получены общие записи о продуктах

  • Водопроводная труба из хлорированного поливинилхлорида (ХПВХ)
  • Медная водопроводная труба
  • Цемент на растворителе ХПВХ
  • Водопроводная труба из полиэтилена высокой плотности
  • Труба для питьевой воды PE-RT
  • Водопроводная труба PEX
  • Полипропиленовая водопроводная труба
  • Водопроводная труба из поливинилхлорида (ПВХ)
  • Грунтовка для труб из ПВХ и ХПВХ

Примечания

[1] US EPA, OW. «Национальные правила первичной питьевой воды». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США, 30 ноября 2015 г. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.; Агентство по охране окружающей среды США, штат Вл. «Подземные воды и питьевая вода». Коллекции и списки. Агентство по охране окружающей среды США, 20 февраля 2013 г. https://www.epa.gov/ground-water-and-drinking-water

[2] Большинство исследований по выщелачиванию сосредоточены на новых материалах, но есть несколько исследований, посвященных долгосрочному выщелачиванию из труб. Например, см. Коннелл, Мэтью, Александра Стенсон, Лорен Вайнрих, Марк ЛеШевалье, Шелби Л. Бойд, Раадж Р. Госал, Раджарши Дей и Эндрю Дж. Уэлтон. «Водопроводные трубы PEX и PP: усваиваемый углерод, химические вещества и запахи». Журнал AWWA 108, вып. 4 (2016): E192–204. https://doi.org/10.5942/jawwa.2016.108.0016; Лашин М.Р., К.М. Шараби, Н.Г. Эль-Холи, И.Ю. Эльшериф и С. Т. Эль-Вакиль. «Факторы, влияющие на выделение свинца и железа из некоторых египетских водопроводных труб». Журнал опасных материалов 160, вып. 2 (30 декабря 2008 г.): 675–80. https://doi.org/10.1016/j.jhazmat.2008.03.040; и Лёшнер, Дорит, Томас Рапп, Франк-Ульрих Шлоссер, Рамона Шустер, Эрнст Стоттмайстер и Свен Зандер. «Опыт применения проекта европейского стандарта PrEN 15768 для идентификации вымываемых органических веществ из материалов, контактирующих с питьевой водой, методом ГХ-МС». Аналитические методы 3, вып. 11 (1 ноября 2011 г.): 2547–56. https://doi.org/10.1039/C1AY05471F.

[3] NSF International. «NSF/ANSI 61: Компоненты системы питьевой воды — влияние на здоровье». 05.01.2016. НСФ Интернэшнл. По состоянию на 9 июля 2021 г. https://www.nsf.org/knowledge-library/nsf-ansi-standard-61-drinking-water-system-components-health-effects.

[4] NSF International. «Сертификат NSF/ANSI/CAN 61 для ваших компонентов питьевой воды». НСФ Интернэшнл. По состоянию на 9 июля 2021 г. https://www.nsf.org/knowledge-library/nsf-ansi-61-certification-for-your-drinking-water-components.

[5] NSF International. «Технические требования NSF/ANSI 372». НСФ Интернэшнл. По состоянию на 9 июля 2021 г. https://www.nsf.org/knowledge-library/nsf-ansi-372-technical-requirements.

[6] US EPA, OW. «Использование бессвинцовых труб, фитингов, приспособлений, припоя и флюса для питьевой воды». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США. По состоянию на 8 июля 2021 г. https://www.epa.gov/sdwa/use-lead-free-pipes-fittings-fixtures-solder-and-flux-drinking-water; Ассоциация развития меди. «Справочник по медным трубкам: VI. Фитинги, припои, флюсы: припои». По состоянию на 10 августа 2021 г. https://www.copper.org/applications/plumbing/cth/fittings/cth_5join_sod.html; ASTM B32-20, Стандартные технические условия на металлический припой, ASTM International, West Conshohocken, PA, 2020, https://doi.org/10.1520/B0032-20.

[7] Американская академия педиатрии. «Воздействие свинца на детей». ААП.org. По состоянию на 8 июля 2021 г. http://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/lead-exposure/Pages/Lead-Exposure-in-Children.aspx; Агентство по охране окружающей среды США, штат Вл. «Основная информация о свинце в питьевой воде». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США, 2 февраля 2016 г. https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water; Всемирная организация здравоохранения (ВОЗ). «Отравление свинцом и здоровье». По состоянию на 8 июля 2021 г. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health.

[8] Глёзер, Саймон, Марсель Сулье и Луис А. Терсеро Эспиноза. «Динамический анализ глобальных потоков меди. Глобальные запасы, потоки материалов после потребления, показатели переработки и оценка неопределенности». Экологические науки и технологии 47, вып. 12 (18 июня 2013 г.): 6564–72. https://doi.org/10.1021/es400069b.

[9] Danwatch. «Воздействие добычи меди на людей и природу». По состоянию на 30 апреля 2020 г. https://old.danwatch.dk/en/undersogelseskapitel/impacts-of-copper-mining-on-people-and-nature/; Робертс, Тристан. «Трубопровод в перспективе: выбор трубы для водопровода в зданиях». BuildingGreen, 5 апреля 2007 г. https://www.buildinggreen.com/feature/piping-perspective-selecting-pipe-plumbing-buildings.

[10] Национальный центр гигиены окружающей среды (NCH). «Глава 8: Сельское водоснабжение и вопросы качества воды». и «Глава 9: Сантехника». В Справочном руководстве Healthy Housing . Центры США по контролю за заболеваниями (CDC), 2009 г. https://www.cdc.gov/nceh/publications/books/housing/cha09.htm.

[11] US EPA, OW. «Национальные правила первичной питьевой воды». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США, 30 ноября 2015 г. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations; Министерство здравоохранения Миннесоты. «Медь в питьевой воде». По состоянию на 12 июля 2021 г. https://www.health.state.mn.us/communities/environment/water/contaminants/copper.html#HealthEffects.

[12] Коннелл, Мэтью, Александра Стенсон, Лорен Вейнрих, Марк ЛеШевалье, Шелби Л. Бойд, Раадж Р. Госал, Раджарши Дей и Эндрю Дж. Уэлтон. «Водопроводные трубы PEX и PP: усваиваемый углерод, химические вещества и запахи». Журнал AWWA 108, вып. 4 (2016): E192–204. https://doi.org/10.5942/jawwa.2016.108.0016; Лашин М.Р., К.М. Шараби, Н.Г. Эль-Холи, И.Ю. Эльшериф и С.Т. Эль-Вакиль. «Факторы, влияющие на выделение свинца и железа из некоторых египетских водопроводных труб». Журнал опасных материалов 160, вып. 2 (30 декабря 2008 г.): 675–80. https://doi.org/10.1016/j.jhazmat.2008.03.040; Лёшнер, Дорит, Томас Рапп, Франк-Ульрих Шлоссер, Рамона Шустер, Эрнст Стоттмайстер и Свен Цандер. «Опыт применения проекта европейского стандарта PrEN 15768 для идентификации вымываемых органических веществ из материалов, контактирующих с питьевой водой, методом ГХ-МС». Аналитические методы 3, вып. 11 (1 ноября 2011 г.): 2547–56. https://doi.org/10.1039/C1AY05471F.

[13] Американская академия педиатрии. «Воздействие свинца на детей». ААП.org. По состоянию на 8 июля 2021 г. http://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/lead-exposure/Pages/Lead-Exposure-in-Children.aspx; Агентство по охране окружающей среды США, штат Вл. «Основная информация о свинце в питьевой воде». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США, 2 февраля 2016 г. https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water; Всемирная организация здравоохранения (ВОЗ). «Отравление свинцом и здоровье». По состоянию на 8 июля 2021 г. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health.

[14] Ассоциация развития меди. «Copper.Org: Справочник по медным трубам: XI. Press-Connect Joints». По состоянию на 11 августа 2021 г. https://www.copper.org/applications/plumbing/cth/press-connect/.

[15] US EPA, OW. «Использование бессвинцовых труб, фитингов, приспособлений, припоя и флюса для питьевой воды». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США. По состоянию на 8 июля 2021 г. https://www.epa.gov/sdwa/use-lead-free-pipes-fittings-fixtures-solder-and-flux-drinking-water.

[16] Национальный центр гигиены окружающей среды (NCH). «Глава 8: Сельское водоснабжение и вопросы качества воды». и «Глава 9: Сантехника. В Справочном руководстве Healthy Housing . Центры США по контролю за заболеваниями (CDC), 2009 г. https://www.cdc.gov/nceh/publications/books/housing/cha09.htm.

[17] US EPA, OW. «Национальные правила первичной питьевой воды». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США, 30 ноября 2015 г. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations; Министерство здравоохранения Миннесоты. «Медь в питьевой воде». По состоянию на 12 июля 2021 г. https://www.health.state.mn.us/communities/environment/water/contaminants/copper.html#HealthEffects.

[18] Лешнер, Дорит, Томас Рапп, Франк-Ульрих Шлоссер, Рамона Шустер, Эрнст Стоттмайстер и Свен Цандер. «Опыт применения проекта европейского стандарта PrEN 15768 для идентификации вымываемых органических веществ из материалов, контактирующих с питьевой водой, методом ГХ-МС». Аналитические методы 3, вып. 11 (1 ноября 2011 г.): 2547–56. https://doi.org/10.1039/C1AY05471F; Лю, Зе-хуа, Хуа Инь и Чжи Дан. «Оказывают ли эстрогенные соединения в питьевой воде, мигрирующие из системы распределения пластиковых труб, неблагоприятное воздействие на человека? Анализ научной литературы». Науки об окружающей среде и исследования загрязнения 24, вып. 2 (1 января 2017 г.): 2126–34. https://doi.org/10.1007/s11356-016-8032-z.

[19] Коннелл, Мэтью, Александра Стенсон, Лорен Вайнрих, Марк ЛеШевалье, Шелби Л. Бойд, Раадж Р. Госал, Раджарши Дей и Эндрю Дж. Уэлтон. «Водопроводные трубы PEX и PP: усваиваемый углерод, химические вещества и запахи». Журнал AWWA 108, вып. 4 (2016): E192–204. https://doi.org/10.5942/jawwa.2016.108.0016; Лунд, Видар, Мэри Андерсон-Гленна, Ингун Скьеврак и Ингер-Лизе Стеффенсен. «Долгосрочное исследование миграции летучих органических соединений из труб из сшитого полиэтилена (PEX) и влияния на качество питьевой воды». Журнал воды и здоровья 9, нет. 3 (1 сентября 2011 г.): 483–97. https://doi.org/10.2166/wh.2011.165; Люцхофт, Ханс-Кристиан Хольтен, Кристофер Кевин Ваул, Хенрик Расмус Андерсен, Божена Серединска-Собекка, Ханс Мосбек, Нина Кристенсен, Микаэль Эмиль Олссон и Эрик Арвин. «Анализ HS-SPME-GC-MS продуктов разложения антиоксидантов, попадающих в питьевую воду из полиэтиленовых материалов и труб PEX». Международный журнал экологической аналитической химии 93, вып. 6 (1 мая 2013 г.): 593–612. https://doi.org/10.1080/03067319.2012.727805; Шейх, Мухаммад Мансур, Авад О. Аль-Сухаими, Марлия М. Ханафия, Мухаммад Акил Ашраф, Ахад Фантух и Эман Аль-Харби. «Выщелачиваемые летучие органические соединения из полиэтиленовых сантехнических пластиковых труб: пример Медины Аль-Мунавара, Саудовская Аравия». Acta Chemica Малайзия 1, вып. 1 (17 февраля 2017 г.): 01–03. https://doi.org/10.26480/acmy.01.2017.01.03; Скьеврак, Ингун, Анн Дью, Карл Олав Гьерстад и Халлгейр Херикстад. «Летучие органические компоненты, мигрирующие из пластиковых труб (HDPE, PEX и PVC) в питьевую воду». Исследования воды 37, вып. 8 (апрель 2003 г.): 1912–20. https://doi.org/10.1016/S0043-1354(02)00576-6

[20] Лунд, Видар, Мэри Андерсон-Гленна, Ингун Скьеврак и Ингер-Лизе Стеффенсен. «Долгосрочное исследование миграции летучих органических соединений из труб из сшитого полиэтилена (PEX) и влияния на качество питьевой воды». Журнал воды и здоровья 9, вып. 3 (1 сентября 2011 г.): 483–97. https://doi.org/10.2166/wh.2011.165; Скьеврак, Ингун, Анн Дью, Карл Олав Гьерстад и Халлгейр Херикстад. «Летучие органические компоненты, мигрирующие из пластиковых труб (HDPE, PEX и PVC) в питьевую воду». Исследования воды 37, вып. 8 (апрель 2003 г.): 1912–20. https://doi.org/10.1016/S0043-1354(02)00576-6;

Коннелл, Мэтью, Александра Стенсон, Лорен Вайнрих, Марк ЛеШевалье, Шелби Л. Бойд, Раадж Р. Госал, Раджарши Дей и Эндрю Дж. Уэлтон. «Водопроводные трубы PEX и PP: усваиваемый углерод, химические вещества и запахи». Журнал AWWA 108, вып. 4 (2016): E192–204. https://doi.org/10.5942/jawwa.2016.108.0016.

[21] Датское агентство по охране окружающей среды. «Статусвердеринг ведр. afgivelse af organiske stuffer fra plastrør til drikkevand». Датское агентство по охране окружающей среды, 2012 г. https://www2.mst.dk/Udgiv/publikationer/2012/09./978-87-92903-53-2.pdf.

[22] Американская академия педиатрии. «Воздействие свинца на детей». ААП.org. По состоянию на 8 июля 2021 г. http://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/lead-exposure/Pages/Lead-Exposure-in-Children.aspx; Агентство по охране окружающей среды США, штат Вл. «Основная информация о свинце в питьевой воде». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США, 2 февраля 2016 г. https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water; Всемирная организация здравоохранения (ВОЗ). «Отравление свинцом и здоровье». По состоянию на 8 июля 2021 г. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health.

[23] Национальный центр гигиены окружающей среды (NCH). «Глава 8: Сельское водоснабжение и вопросы качества воды». и «Глава 9: Сантехника». В Справочном руководстве Healthy Housing . Центры США по контролю за заболеваниями (CDC), 2009 г. https://www.cdc.gov/nceh/publications/books/housing/cha09.htm.

[24] US EPA, OW. «Национальные правила первичной питьевой воды». Обзоры и информационные бюллетени. Агентство по охране окружающей среды США, 30 ноября 2015 г. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations; Министерство здравоохранения Миннесоты. «Медь в питьевой воде». По состоянию на 12 июля 2021 г. https://www.health.state.mn.us/communities/environment/water/contaminants/copper.html#HealthEffects.

[25] Адамс, Уильям А., Ин Сюй, Джон С. Литтл, Энтони Ф. Фристачи, Гленн Э. Райс и Кристофер А. Импеллиттери. «Прогнозирование скорости миграции диалкилоловоорганических соединений из ПВХ-трубы в воду». Экологические науки и технологии 45, вып. 16 (15 августа 2011 г.): 6902–7. https://doi.org/10.1021/es201552x.

[26] Например, диметилолова бис(2-этилгексилмеркаптоацетат) CAS № 57583-35-4 представляет собой термостабилизатор, обнаруженный в водопроводных трубах из ПВХ, и «предполагается, что он наносит ущерб фертильности или нерожденному ребенку» и «может нанести ущерб органические при длительном или многократном воздействии» в соответствии с Реестром классификации и маркировки Европейского химического агентства.

[27] Tomboulian, P., L. Schweitzer, K. Mullin, J. Wilson, and D. Khiari. «Материалы, используемые в системах распределения питьевой воды: влияние на вкус и запах». Водные науки и технологии 49, вып. 9 (1 мая 2004 г.): 219–26. https://doi.org/10.2166/wst.2004.0575; Фауст, Дерек Р., Кимберли Дж. Вутен и Филип Н. Смит. «Перенос фталатов из C-поливинилхлорида и сшитых полиэтиленовых труб (PEX-b) в питьевую воду». Водоснабжение 17, №. 2 (28 сентября 2016 г.): 588–9.6. https://doi.org/10.2166/ws.2016.164.

[28] Фауст, Дерек Р., Кимберли Дж. Вутен и Филип Н. Смит. «Перенос фталатов из C-поливинилхлорида и сшитых полиэтиленовых труб (PEX-b) в питьевую воду». Водоснабжение 17, №. 2 (28 сентября 2016 г.): 588–96. https://doi.org/10.2166/ws.2016.164.

[29] Гор, А. С., В. А. Чаппелл, С. Э. Фентон, Дж. А. Флоуз, А. Надаль, Г. С. Принс, Дж. Топпари и Р. Т. Зоеллер. «EDC-2: второе научное заявление эндокринного общества о химических веществах, разрушающих эндокринную систему». Эндокринные обзоры 36, вып. 6 (декабрь 2015 г.): E1–150. https://doi.org/10.1210/er.2015-1010; Энгель, Стефани М., Хизер Б. Патисол, Шарлотта Броуди, Расс Хаузер, Ами Р. Зота, Дебора Х. Беннет, Морин Суонсон и Робин М. Уайатт. «Нейротоксичность орто-фталатов: рекомендации по критическим политическим реформам для защиты развития мозга у детей». Американский журнал общественного здравоохранения, 18 февраля 2021 г. , стр. 1–9.. https://doi.org/10.2105/AJPH.2020.306014; Беннетт Дебора, Беллинджер Дэвид С., Бирнбаум Линда С., Брэдман Аса, Чен Аймин, Кори-Слехта Дебора А., Энгель Стефани М. и др. «Проект TENDR: Ориентация на экологические риски нейроразвития. Консенсусное заявление TENDR». Перспективы гигиены окружающей среды 124, вып. 7 (1 июля 2016 г.): A118–22. https://doi.org/10.1289/EHP358.

[30] Contech Engineered Solutions, LLC. «Паспорт безопасности трубного цемента из ПВХ», 8 августа 2013 г. https://www.conteches.com/Portals/0/Documents/MSDS/pvc%20pipe%20cement%20sds.pdf?ver=2018-05-31- 143241-600. По состоянию на 26 июля 2021 г.; Oaty Co. «Паспорт безопасности цемента Fusion Clear PVC», 18 ноября 2016 г. https://images.homedepot-static.com/catalog/pdfImages/29/29950475-eeb8-47dd-b211-58e336bee077.pdf. По состоянию на 26 июля 2021 г.; Корпорация Томас и Беттс. «Паспорт безопасности цемента-растворителя Carlon с низким содержанием летучих органических соединений для пластиковых труб из ПВХ», 6 мая 2016 г. https://www.cesco.com/resources/pdf_66D/sds-00060-tb2.pdf. По состоянию на 26 июля 2021 г.

[31] Шерил Фиандака. «I-Team: Сантехники говорят, что трубы из ПВХ представляют долгосрочную опасность для здоровья». WBZ CBS Boston (блог), 8 июня 2021 г. https://boston.cbslocal.com/2021/06/08/i-team-plumbing-massachusetts-pvc-health-risks-building-code/.

[32] Энн Блейк и Марк Росси. «Карта показателей пластики». Акция «Чистое производство», 1 июля 2014 г. https://www.cleanproduction.org/resources/entry/plastics-scorecard-resource.

[33] Адамс, Уильям А., Ин Сюй, Джон К. Литтл, Энтони Ф. Фристачи, Гленн Э. Райс и Кристофер А. Импеллиттери. «Прогнозирование скорости миграции диалкилоловоорганических соединений из ПВХ-трубы в воду». Экологические науки и технологии 45, вып. 16 (15 августа 2011 г.): 6902–7. https://doi.org/10.1021/es201552x.

[34] Tomboulian, P., L. Schweitzer, K. Mullin, J. Wilson, and D. Khiari. «Материалы, используемые в системах распределения питьевой воды: влияние на вкус и запах». Водные науки и технологии 49, вып. 9 (1 мая 2004 г.): 219–26. https://doi.org/10.2166/wst.2004.0575; Фауст, Дерек Р., Кимберли Дж. Вутен и Филип Н. Смит. «Перенос фталатов из C-поливинилхлорида и сшитых полиэтиленовых труб (PEX-b) в питьевую воду». Водоснабжение 17, №. 2 (28 сентября 2016 г.): 588–9.6. https://doi.org/10.2166/ws.2016.164.

[35] Фауст, Дерек Р., Кимберли Дж. Вутен и Филип Н. Смит. «Перенос фталатов из C-поливинилхлорида и сшитых полиэтиленовых труб (PEX-b) в питьевую воду». Водоснабжение 17, №. 2 (28 сентября 2016 г.): 588–96. https://doi.org/10.2166/ws.2016.164.

[36] Гор, А. С., В. А. Чаппелл, С. Э. Фентон, Дж. А. Флоус, А. Надаль, Г. С. Принс, Дж. Топпари и Р. Т. Зоеллер. «EDC-2: второе научное заявление эндокринного общества о химических веществах, разрушающих эндокринную систему». Эндокринные обзоры 36, вып. 6 (декабрь 2015 г.): E1–150. https://doi.org/10.1210/er.2015-1010; Энгель, Стефани М., Хизер Б. Патисол, Шарлотта Броуди, Расс Хаузер, Ами Р. Зота, Дебора Х. Беннет, Морин Суонсон и Робин М. Уайатт. «Нейротоксичность орто-фталатов: рекомендации по критическим политическим реформам для защиты развития мозга у детей». Американский журнал общественного здравоохранения, 18 февраля 2021 г., стр. 1–9.. https://doi.org/10.2105/AJPH.2020.306014; Беннетт Дебора, Беллинджер Дэвид С., Бирнбаум Линда С., Брэдман Аса, Чен Аймин, Кори-Слехта Дебора А., Энгель Стефани М. и др. «Проект TENDR: Ориентация на экологические риски нейроразвития. Консенсусное заявление TENDR». Перспективы гигиены окружающей среды 124, вып. 7 (1 июля 2016 г.): A118–22. https://doi.org/10.1289/EHP358.

[37] E-Z Weld Group, LLC. «Паспорт безопасности цемента CPVC Export Cement Product 786 Heavy Body/Orange CPVC», 27 мая 2015 г. По состоянию на 26 июля 2021 г. https://www.e-zweld.com/wp-content/uploads/2017/11/ 786-ХПВХ-Цемент-SDS.pdf; Корпорация IPS. «Паспорт безопасности одношагового растворителя цемента TFP-500», февраль 2020 г. По состоянию на 26 июля 2021 г. https://www.tyco-fire.com/TD_TFP/TFP/TFP1990_02_2020.pdf; Oaty Co. «Паспорт безопасности цемента Oatey CPVC Medium Orange», 29 июня 2012 г. По состоянию на 26 июля 2021 г. https://images.homedepot-static.com/catalog/pdfImages/84/84843a26-dbe9-4b4c-b525 -8д112д5дда60.pdf.

[38] Энн Блейк и Марк Росси. «Карта показателей пластики». Акция «Чистое производство», 1 июля 2014 г. https://www.cleanproduction.org/resources/entry/plastics-scorecard-resource.

Сантехника и трубы | EWG’s Healthy Living: Home Guide

Грязные подробности

В 1986 году поправки к федеральному Закону о безопасной питьевой воде предписывали использовать трубы и водопроводные материалы без свинца, хотя термин «бессвинцовый» был неправильным, поскольку закон разрешал продуктам содержать до 8 процентов свинца. В 2011 году в закон снова были внесены поправки, определяющие содержание свинца не более 0,25%, но новый стандарт не вступал в силу до 2014 года. Таким образом, чем старше трубы в вашем доме, тем больше вероятность того, что они содержат потенциально опасные уровни свинца. Более того, пластиковые трубы, которые заменяют металлические трубы, могут содержать другие опасные химические вещества.

Свинец

Питьевая вода в старых домах может быть загрязнена свинцом из-за старых водопроводных систем. Трубы в домах, построенных до 1930 года, чаще всего содержат свинец, а в домах, построенных до 1980 года, медные трубы, скорее всего, соединены свинцовым припоем. Латунные краны или медные или полипропиленовые трубы «Бессвинцовые» соединительные материалы с содержанием свинца менее 0,20 % «Бессвинцовые» смесители и арматура с содержанием свинца менее 0,25 %, фитинги могут также содержать свинец и выделять его, даже если они помечены как « без свинца.» Чем больше эти трубы, припой и краны разъедены кислотой, тем сильнее будет загрязнение водопроводной воды свинцом.

Вода, загрязненная свинцом, даже в малых количествах, может быть опасной, особенно для детей и беременных женщин.

Единственный способ узнать наверняка, загрязнена ли ваша питьевая вода свинцом, — это проверить ее в коммерческой лаборатории, сертифицированной государством. Свяжитесь с местным водоканалом или местным отделом здравоохранения и запросите у них список рекомендуемых лабораторий. Некоторые сообщества предлагают бесплатные наборы для тестирования на содержание свинца.

Трубы из ПВХ

Канцерогенный винилхлорид может выделяться из труб, изготовленных из поливинилхлорида или ПВХ, особенно из труб, изготовленных до 1977. Совет по экологическому строительству США заявляет, что, учитывая жизненный цикл ПВХ, от производства до утилизации, этот материал явно более опасен для здоровья, чем другие типы труб.

Прочие пластиковые трубы

Тип полиэтилена, называемый PEX, стал популярным выбором для изготовления труб. Трубы PEX гибкие, прочные и устойчивые к коррозии. Но поскольку она в некоторой степени проницаема, пестициды, бензин или другие загрязнители почвы могут мигрировать через трубу в питьевую воду. Исследования также показали, что трубы PEX могут выделять МТБЭ, токсичный побочный продукт нефти, в питьевую воду. 2009 г. Исследование Калифорнийской комиссии по строительным стандартам показало, что выщелачивание МТБЭ из труб PEX со временем быстро снижается, но некоторое выщелачивание все же может происходить. —

Healthier Choices

Медные трубы

Медные трубы с соединительными материалами, не содержащими свинца, являются лучшим выбором для водопроводных труб. Они долговечны и не будут выделять химические вещества в вашу питьевую воду. Однако медные трубы, как правило, дороже, а интенсивный процесс добычи и производства меди сопряжен с некоторыми экологическими компромиссами. Кроме того, если значение pH вашей воды меньше 7, вам необходимо установить систему для балансировки кислотности воды, чтобы она не разъела медь.

Полипропиленовые трубы

Полипропиленовые трубы — еще один хороший выбор, они дешевле медных труб. Полипропилен — прочный, жесткий пластик с меньшей вероятностью химического выщелачивания по сравнению с PEX. Для соединения полипропиленовых труб можно использовать тепло вместо химических растворителей или свинцовых соединительных материалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *