Бетон википедия – это что такое? Состав, производство и применение бетона :: SYL.ru

Тяжёлые бетоны — Википедия

Материал из Википедии — свободной энциклопедии

Тяжёлые бетоны — группа бетонов с объёмной массой от 1800 до 2500 кг/м3[1]. Тяжёлый бетон применяется как при заливке монолитных сооружений, так и при создании элементов сборных конструкций — дорожных плит, плит перекрытий, фундаментных блоков, свай и т. д.

Тяжёлые бетоны обладают большей удельной прочностью на сжатие в сравнении с лёгкими, из-за чего получили распространение в капитальном строительстве. Высокая плотность тяжёлого бетона обусловлена как используемым наполнителем, так и значительным механическим уплотнением. К плюсам тяжёлых бетонов можно отнести долговечность, высокую прочность, твёрдость и морозостойкость; к минусам — значительную стоимость производства и высокую теплопроводность. Некоторые разновидности имеют многовековой срок службы и способны постепенно набирать прочность в течение сотен лет. Тяжёлый бетон классифицируется по силе разрушающей нагрузки в зависимости от марки и класса.

Вне зависимости от вида и марки тяжёлого бетона, в его состав неизменно входят следующие компоненты:

  • Вяжущий компонент — в его качестве используются различные виды цементов по составу и марочной прочности от М200 до М800 или полимеры. От него зависят конечные прочностные характеристики и время затвердевания искусственного камня.
  • Крупный заполнитель — придает дополнительную прочность. Один из наиболее распространённых — щебень гранитных пород.
  • Мелкий заполнитель — его роль состоит в том, чтобы сделать смесь максимально однородной. Чаще всего для растворов используют среднефракционный песок (от 0,14 до 5 мм). Важно, чтобы он был максимально чистый и не содержал глинистых включений.
  • Вода. Для получения качественного раствора необходима вода средней жёсткости без дополнительных примесей и загрязнений.
  • Пластифицирующие добавки — существуют различные виды пластификаторов, классифицируемых в зависимости от направленности действия: придающие прочность, увеличивающие морозостойкость, пластичность, гидрофобность, вязкость, разжижение. Содержание пластификаторов варьируется в среднем от 0,15 до 0,3 % от массы вяжущего.
  • Железобетон отличается значительным весом и повышенной сопротивляемостью к разрушающим нагрузкам на изгиб за счёт арматурного каркаса, что делает его распространённой основой для создания других, более специализированных, типов тяжёлого бетона.
  • Полимербетон отличается от цементного бетона частичным или полным замещением минерального вяжущего полимерными или эпоксидными смолами, повышающими долговечность и эксплуатационные характеристики.
  • Высокопрочный бетон характеризуется повышенной плотностью и показателем прочности, которых удается добиться благодаря специализированным добавкам и особой технологии изготовления.
  • Дорожный бетон имеет высокую прочность на изгиб (в пределах 4—5,5 МПа) и износ, а также повышенную устойчивость к замораживанию.
  • Быстротвердеющий бетон отличается быстрыми сроками схватывания и набора прочности без потери своих характеристик.
  • Гидротехнический бетон изготавливается на основе пуццоланового и сульфатостойкого портландцемента. Обладает высокой стойкостью к влаге и замораживанию, имеет меньшую теплопроводность и коэффициент теплового расширения в сравнении с другими типами бетона. Используется преимущественно при строительстве конструкций гидротехнического назначения — железобетонных труб, тюбингов, опор мостов и плотин ГЭС.
  • Кислотостойкий (кислотоупорный) бетон обладает повышенной устойчивостью к воздействию едких химических соединений. Применяется при строительстве объектов химической промышленности.
  • Жаростойкий бетон используется при создании конструктивных элементов, обладающих повышенной устойчивостью к воздействию высоких температур (до 12 000 °C). Классифицируются в зависимости от максимальной температуры применения, огнеупорности и открытой пористости
    [2]
    . Имеет в составе глинозёмистый цемент, жидкое стекло, шлакопортландцемент. В качестве наполнителя используются шлаки металлургии, бой огнеупорной керамики, базальт, туф. Предназначен в основном для изготовления элементов промышленных печей.
  • Особо тяжёлый бетон содержит такие компоненты, как магнетит, лимонит, чугунная дробь и металлический скрап. Плотность материала может достигать 5000 кг/м3. Используется преимущественно на атомных станциях для защиты персонала от излучения.
  • Декоративный бетон применяется как при строительстве декоративных и облицовочных элементов, так и несущих конструкций. Обладает прочностью не ниже М 150 и значительной морозостойкостью. Имеет в основе белый или цветной цемент, также в его состав могут входить добавки окрашенных горных пород.

Ячеистый бетон — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 марта 2016; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 марта 2016; проверки требуют 2 правки. Блоки различного размера из автоклавного ячеистого бетона (газобетон)

Ячеистый бетон — искусственный пористый строительный материал на основе минеральных вяжущих и кремнезёмистого заполнителя. Является одной из разновидностей лёгкого бетона.

Предназначен, в основном, для строительной теплоизоляции: утепление по железобетонным плитам перекрытий и чердачных перекрытий, в качестве теплоизоляционного слоя многослойных стеновых конструкций зданий различного назначения; для теплозащиты поверхностей оборудования и трубопроводов при температуре до 400°С; жаростойкие ячеистые бетоны применяются для теплоизоляции оборудования с температурой поверхности до 700°С.

В последние годы блоки из ячеистого бетона набирают популярность в качестве конструкционного стенового материала. Коттеджи и многоэтажные дома, построенные из ячеистого бетона, имеют лучшие тепловые характеристики по сравнению с кирпичными. Достигается это во многом благодаря правильной геометрии современных блоков. За счёт чётких размеров (±2 мм) блоки можно укладывать на специальный клей с клеящим слоем не более 3 мм, а не на слой цементного раствора, который обычно и служит мостиком холода.

Актуальность

Данные в этой статье приведены по состоянию на начало 2007 года.

Вы можете помочь, обновив информацию в статье.

В соответствии с ГОСТ 25485-89 «Бетоны ячеистые. Технические условия» бетоны классифицируются:

1. По функциональному назначению:

  1. теплоизоляционный — объёмная масса 300—500 кг/м³.
  2. конструкционно-теплоизоляционный- объёмная масса 500—900 кг/м³.
  3. конструкционный (бетон для конструкционных элементов жилых и сельскохозяйственных зданий) — объёмная масса 1000—1200 кг/м³.

2. По способу поризации:

  1. газообразование (газобетоны, газосиликаты).
  2. пенообразование (пенобетоны, пеносиликаты).
  3. аэрирование (аэрированный ячеистый бетон, аэрированный ячеистый силикат).

К модификациям способов поризации относятся:

  1. вспучивание массы газообразованием в вакууме (небольшое разрежение).
  2. аэрирование массы под давлением (барботирование её сжатым воздухом) с последующим снижением давления до атмосферного (баротермальный способ).
  3. газопенная технология (пеногазобетон) — сочетание метода аэрирования и газообразования.

3. По виду вяжущего вещества: в основном, используют цемент, известь, реже гипс (газогипс).

4. По виду кремнезёмистого компонента: кварцевый песок, зола-унос от сжигания угля, кислые металлургические шлаки и др.

5. По способу твердения: неавтоклавные, предусматривающие пропаривание, электропрогрев или другие виды прогрева при нормальном давлении, и автоклавные, которые твердеют при повышенном давлении и температуре.

Гидротехнический бетон — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 мая 2016; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 мая 2016; проверки требуют 4 правки.

Гидротехни́ческий бето́н — разновидность тяжёлого бетона, которую используют при строительстве конструкций сооружений или их фрагментов, периодически контактирующих с водной средой, либо постоянно находящихся в воде.

В зависимости от расположения и условий работы конструктивных элементов гидротехнических сооружений согласно СНиП к бетону предъявляются определённые требования. Гидротехнический бетон наряду с водонепроницаемостью, морозостойкостью, прочностью на сжатие и растяжение, характеризуется стойкостью к агрессивному воздействию воды и ограниченным выделением тепла в процессе твердения (при застывании)[1].

Основой для приготовления гидротехнического бетона служит портландцемент и его разновидности. В качестве наполнителя используют песок, щебень, а также гравий или гальку крупностью от 150 мм и более. С целью повышения качества бетонной смеси в неё вводят различные добавки (воздухововлекающие, пластифицирующие, уплотняющие и другие)[1].

Для увеличения водостойкости бетона используются следующие виды добавок:

  • Пластификаторы. Действие таких добавок состоит в повышении пластичности раствора и качественном заполнении формы, ограниченной опалубкой. Одновременно наблюдается снижение содержания избыточной влаги, способствующей порообразованию. Пластификаторы добавляются в количестве от 0,1 до 3,0 % по массе.
  • Компоненты, заполняющие поры и трещины. В состав бетона вводятся неорганические соли металлов – хлорного железа, силиката натрия и калия, нитрата кальция и пр. Одним из наиболее эффективных некоммерческих препаратов считается нитрат кальция (кальциевая селитра). Ее добавление к бетону в количестве 0,5-1 % максимально повышает водонепроницаемость и конечную прочность.
  • Гидрофобные добавки. В качестве гидрофобных компонентов применяются щелочные соли высших кислот (олеат или стеарат натрия, кальция, цинка и др.) и силиконовые жидкости. Содержание этих веществ невелико и составляет обычно 0,15-1 % от массы связующего.
  • Стольников В. В., Исследования по гидротехническому бетону, М. — Л., 1962.

Стойкость бетона — Википедия

Сто́йкость бето́на — это способность материала долго сохранять свои свойства: огнестойкость и жаростойкость, морозостойкость, стойкость бетона в химически агрессивной водной и газовой среде, сохранять свои эксплуатационные качества при работе в неблагоприятных условиях внешней среды без значительных повреждений и разрушений.

Особенно высокое расширение твердеющего бетона (цементного камня) происходит в процессе образовании гидросульфоалюмината кальция (3CaSO4 • 3СаО • Al2O3 • 3Н2О). Также коррозия бетона может наблюдаться при наличии в воздухе влаги и различных кислых газов. Так, например, сернистый газ, выходящий из топок котлов, паровозов или из некоторых химических аппаратов, соединяясь с влагой воздуха и парами воды, образует сернистую кислоту, которая разрушает бетон так же, как и свободная кислота в водной среде. Процессы химической коррозии бетона нельзя рассматривать вне связи с физическими и физико-химическими процессами, происходящими в бетоне под воздействием внешней водной или газовой среды. Большое влияние, в частности, оказывают объёмные деформации, возникающие в результате влагообмена (поглощения воды и её испарения), процессы замораживания и оттаивания, просачивания и фильтрации воды, диффузионные процессы перемещения влаги в бетоне и т. д.

Повышение стойкости бетона независимо от вида коррозии достигается обеспечением необходимой плотности и однородности строения бетона. Наличие раковин и различного рода неплотностей в виде открытых или сообщающихся между собой щелей, трещин, образующихся в результате температурных или усадочных деформаций, наиболее благоприятствует возникновению и развитию процессов коррозии.

Для повышения стойкости бетона по отношению к чисто химическим процессам коррозии необходимо не только обеспечивать достаточную плотность бетона, но и производить отбор вяжущих и заполнителей, наиболее стойких в условиях данного вида коррозии.

Вопрос сохранности арматуры в бетоне неразрывно связан с вопросом стойкости бетона, поэтому его уместно будет рассмотреть здесь же.

Как правило, стальная арматура, заключённая в бетоне, не разрушается (но ржавеет) и может сохраняться в хорошем состоянии в течение весьма продолжительного времени. Сохранность арматуры объясняется наличием щелочной среды в бетоне. Это справедливо лишь для бетонов достаточно плотных, где исключена возможность доступа воздуха непосредственно к стержням стальной арматуры. Поэтому арматура в конструкции должна быть покрыта защитным слоем бетона, минимальная толщина которого колеблется от 10 (для тонкостенных и пустотелых плит, настилов) до 120 мм (для крупных гидротехнических сооружений). При неблагоприятной окружающей среде (высокая влажность, вредные газы и т. п.) толщину защитного слоя следует увеличивать. Защитный слой должен быть плотным, без каких-либо трещин или изъянов, в противном случае назначение его не оправдывается. Трещины в защитном слое открывают доступ воздуха непосредственно к арматуре, что вызывает образование плёнки ржавчины, сопровождающееся увеличением её объёма. Последнее вызывает растягивающие усилия в бетоне, растрескивание и разрушение защитного слоя, со всеми отрицательными последствиями для долговечности железобетонной конструкции.

Огнестойкость и жаростойкость бетона[править | править код]

Под огнестойкостью понимают сопротивляемость бетона кратковременному действию огня при пожаре. Под жаростойкостью понимают стойкость бетона при длительном и постоянном действии высоких температур в условиях эксплуатации тепловых агрегатов (жароупорный бетон). Бетон относится к числу огнестойких материалов. Вследствие сравнительно малой теплопроводности бетона кратковременное воздействие высоких температур не успевает вызвать значительного нагревания бетона и находящейся под защитным слоем арматуры. Значительно опаснее поливка сильно разогретого бетона холодной водой (при тушении пожара), она неизбежно вызывает образование трещин, разрушение защитного слоя и обнажение арматуры при продолжающемся действии высоких температур.

В условиях длительного воздействия высоких температур обычный бетон на портландцементе не пригоден к эксплуатации при температуре выше 250°. Установлено, что при нагреве обычного бетона выше 250—300° происходит снижение прочности с разложением гидрата окиси кальция и разрушением структуры цементного камня. При температуре выше 550° зёрна кварца в песке и гранитном щебне начинают растрескиваться вследствие перехода кварца при этих температурах в другую модификацию (тридимит), что связано со значительным увеличением объёма зёрен кварца и образованием микротрещин в местах соприкосновения зёрен заполнителя и цементного камня. При дальнейшем повышении температуры разрушаются и другие структурные элементы обычного бетона. Научными работами, а также практикой установлена возможность получения на основе портландцемента жароупорного бетона, стойкого до температуры 1100—1200° и более.

Для этого в бетон необходимо вводить тонкомолотые кремнезёмистые или алюмокремнезёмистые добавки, связывающие свободный гидроксид кальция, выделяющийся при гидратации цемента. В качестве же заполнителей применяют материалы, обладающие достаточной степенью огнеупорности и термостойкости, например хромистый железняк, шамот, базальт, андезит, отвальный доменный шлак, туфы и кирпичный щебень. Максимальная температура, выдерживаемая конструкциями, зависит от огнеупорности и термостойкости заполнителей и тонкомолотых добавок. Так, при применении шамота и молотых добавок максимальная эксплуатационная температура жароупорных бетонов на портландцементе достигает 1100—1200°. При максимальной эксплуатационной температуре 700° можно в качестве заполнителей бетона применять базальт, диабаз, андезит, отвальный доменный шлак, артикский туф, бой глиняного кирпича, а в качестве тонкомолотых добавок — пемзу, золу-унос, гранулированный доменный шлак, цемянку. Для таких же температур (до 700°) допускается замена портландцемента в бетоне шлако-портландцементом без введения в этом случае тонкомолотых добавок. Для приготовления жароупорного бетона с эксплуатационной температурой до 1300—1400° следует применять глинозёмистый цемент с мелким и крупным заполнителями из шамота или хромистого железняка. Тонкомолотые добавки для связывания гидроксида кальция в этом случае не требуются. В качестве вяжущего для жароупорного бетона с максимальной температурой до 900—1000° можно применять также жидкое стекло с кремнефтористым натрием.

Стойкость бетона в химически агрессивной водной и газовой среде[править | править код]

Цементный камень в бетоне как компонент обычно менее стойкий, нежели каменные заполнители, при воздействии на бетон химически агрессивных агентов разрушается в первую очередь. Все причины коррозии бетона на портландцементе могут быть сведены в следующие основные группы:

  1. физическое растворение и вынос фильтрующей сквозь бетон мягкой, пресной водой гидрата окиси кальция и других растворимых соединений, входящих в состав цементного камня (явление выщелачивания). Коррозия этого вида связана с прогрессирующим уменьшением плотности бетона;
  2. взаимодействие компонентов цементного камня, прежде всего гидрата окиси кальция, со свободными кислотами, которые могут содержаться в воде. В результате этого взаимодействия образуются относительно легко растворимые соли этих кислот (CaSO4, СаСl2, Са(НСО3)2 и др.), легко вымываемые водой из бетона;
  3. взаимодействие содержащихся в минерализованных водах солей, в частности сульфатных или магнезиальных, с составными частями цементного камня, например Са(ОН)2, ЗСаО • Аl2О3 • 6Н2О; в результате могут происходить обменные реакции с образованием в цементном камне новых соединений, легче растворимых в воде, нежели исходные компоненты цементного камня, например образование под действием сульфатных солей вместо Са(ОН)2 легко растворимого гипса. Гипс при кристаллизации увеличивается в объёме, что может привести к внутренним напряжениям и образованию трещин, усиливающих процессы коррозии бетона и арматуры.
  • Райхель В., Конрад Д. Бетон, часть 1. Свойства. Проектирование. Испытание. Пер. с нем./Под ред. В. Б. Ратинова. — М.: Стройиздат, 1979. — 111с.
  • Райхель В., Глатте Р. Бетон. Часть 2: Изготовление, производство работ, твердение. Под ред. В. Б. Ратинова. — М.: Стройиздат, 1981. — 112 с,
  • Невилль А.М. Свойства бетона. Пер. с англ. В.Д. Парфенова и Т.Ю. Якуб. — М.: Стройиздат, 1972. — 344с.
  • Дворкин Л.И., Дворкин О.Л. Проектирование составов бетона с заданными свойствами — М.: Стройиздат, 1980.
  • Акимова Т.Н. Минеральные вяжущие средства: Учебное пособие / МАДИ (ГТУ). — М., 2007. — 98 с.
  • Акимова Т.Н., Курденкова И.Б. Природные каменные материалы: Методическое пособие / МАДИ (ГТУ). — М., 2007. — 54 с.
  • Литманович А.А., Литманович О.Е. Аналитическая химия. Ч.1: Качественный химический анализ: Методическое пособие / МАДИ (ГТУ) — М., 2008. — 32 с.
  • Е. Шильд, Х.-Ф. Кассельман, Г. Дамен, Р. Строительная физика. Поленц Перевод с немецкого. — М.: Стройиздат, 1982.
  • Семириков И.С. Физическая химия строительных материалов — М.: Стройиздат, 2004
  • Мурадов Э.Г. Материалы для приготовления бетонной смеси и строительного раствора. Учеб.пособие для СПТУ. — М.: Высш. шк., 1987. — 111с
  • Крылов Б.А. и др., Руководство по прогреву бетона в монолитных конструкциях. — НИИЖБ, 2005.
  • Гамильтон К., Морган Дж., в сб.: Органические реакции, пер. с англ. Н. Э. Нифантъев., сб. 2, — М., 1950, с. 461-65.
  • Л.И. Дворкин, О.Л.Дворкин.Справочник по строительному материаловедению. — М.:Инфра-Инженерия. 2010. 472 с.

История бетона — кто изобрел бетон, каким он был раньше

На нормативную прочность бетона при растяжении (Rнр) влияют те же факторы, что и на прочность при сжатии, причем особенно существенное значение здесь имеет неоднородность структуры бетона. Хотя разные факторы сказываются на величинах R и Rнр по-разному. Увеличение расхода цемента увеличивает прочность Rнр значительно меньше, чем R. Повышение расхода цемента на 33% увеличивает R на 28,5%, а Rнр всего на 12,5%. С ростом В/Ц (водоцеметное соотношение) сопротивление разрыву уменьшается меньше, чем сопротивление сжатию.

Кроме того, величина Rнр зависит от зернового состава заполнителя и видов зерен. Песок и гравий с округленными зернами обуславливают меньшую величину прочности нежели песок и щебень с шероховатыми угловатыми зернами. А на величину R эти факторы влияния не оказывают.

При сравнении показателей прочности у бетонов разных марок выясняется, что отношение Rнр/R уменьшается с повышением марки, то есть получается, что бетоны высоких марок обладают относительно меньшей прочностью на растяжение.

Стандарты не требуют специальных испытаний бетона на растяжение и не дают никаких указаний о размерах и форме образцов. Однако, чтобы обеспечить равномерное распределение нагрузки по сечению образца, он должен иметь длину, превышающую поперечный размер не менее чем в 3 раза. Разрывное усилие, как правило, передается через специальные заплечики на концах образца. Важно перед испытанием предохранить образцы от резких перепадов влажности и температуры, так как это оказывает большое влияние на результат. Также окончательный результат испытаний зависит от точности установки в машине и правильной геометрической формы образца. Эксцентрицитет и самый незначительный перекос могут сильно отразиться на показателе Rнр.

При данной методике испытания на растяжение, показатель прочности, вычисленный по формуле Np/Fполучается весьма условным. Нередко образцы разрушаются возле заплечиков, где возникают значительные концентрации напряжения. Но даже при разрыве между заплечиками найденная плотность не менее условна, поскольку разрыв происходит чаще всего по поверхности соприкасания цементного камня с камневидными составляющими. А так как эта поверхность совершенно случайная, то разброс показателей выходит довольно большой.

Как и при сжатии, огромное значение имеет размер поперечного сечения образца: большие значения Rнр имеют образцы с меньшим поперечным сечением.

Прочность бетона при растяжении довольно невелика и составляет от 1/8 до 1/17 от его прочности при сжатии.

Есть несколько способов повысить прочность бетона при растяжении. Лучшие увеличивают плотность бетона. Самый простой — правильный подбор состава бетона и применение цементов высокой прочности. Помогает также примесь разных добавок – тонко измельченных каменных материалов, трасов и пуццоланов. Лучшее средство повышения прочности при растяжении — хорошее уплотнение бетона путем вибрирования, вакуумирования, виброштампования или центрифугирования.

Бетон Википедия

Укладка бетонной смеси

Бето́н (от фр. béton) — искусственный каменный строительный материал, получаемый в результате формования и затвердевания рационально подобранной и уплотнённой смеси, состоящей из вяжущего вещества (например, цемент), крупных и мелких заполнителей, воды. В ряде случаев может иметь в составе специальные добавки, а также не содержать воды (например, асфальтобетон).

История[ | ]

Бетон известен более 4000 лет (Древняя Месопотамия) [источник не указан 988 дней], особенно широко использовался в Древнем Риме[1][прим. 1]. Италия — вулканическая страна, в которой легко доступны компоненты, из которых может быть приготовлен бетон, включая пуццоланы и лавовый щебень. Римляне использовали бетон в массовом строительстве общественных зданий и сооружений, включая Пантеон, купол которого до сих пор является наиболее крупным в мире выполненным из неармированного бетона. При этом в восточной части государства эта технология не получила распространения, там в строительстве традиционно использовался камень, а затем и дешёвая плинфа — род кирпича.

Вследствие упадка Западной Римской империи широкомасштабное строительство монументальных зданий и сооружений сошло на нет, что сделало использование бетона нецелесообразным и в сочетании с общей деградацией ремесла и науки привело к утрате технологии его производства. В период раннего Средневековья единственными крупными архитектурными объектами были соборы, которые возводились из природного камня.

Современный бетон на цементном вяжущем веществе известен с 1844 года (И. Джонсон). Патент на портландцемент получил в 1824 году Джозеф Аспдин; патент на «римский цемент» получил в 1796 году Джеймс Паркер.

Мировыми лидерами в производстве бетона являются Китай (430 млн м³ в 2006 г.)[2] и США (345 млн м³ в 2005 г.[3] и 270 млн м³ в 2008 г.)[2]. В России в 2008 г. было произведено 52 млн м³.

Изготовление[ | ]

Бетон – Уикипедия

Concrete pouring 0020.jpg

Бетонът е композитен строителен материал, получен в резултат от втвърдяването на смес от цимент, вода, пясък, едър добавъчен материал (трошен камък или речен чакъл), а в някои случаи химични и/или минерални добавки. Преди втвърдяването си материалът се нарича бетонова смес.

Поради сравнително ниската си якост на опън, в строителните конструкции бетонът често се използва в комбинация със стоманена прътова армировка, образувайки стоманобетон. В някои специфични приложения (главно настилки) се използва армиране със стоманени или полимерни фибри (дисперсно армиран бетон). Неармиран бетон се използва предимно за относително масивни и/или слабо натоварени елементи – фундаменти, гравитационни подпорни стени, язовирни стени.

Свързващо вещество[редактиране | редактиране на кода]

Свързващо вещество (портландцимент) – класификацията и техническите изисквания към портландцимента са разгледани в БДС EN 197 – 1.[1] В зависимост от якостта на натиск циментите се разделят на класове – 32.5, 42.5, и 52.5, като числото показва якостта на натиск на цимента на възраст 28 дни, определена по БДС EN 196 – 1. Според темповете на нарастване на якостта на натиск на портландцимента се различават два типа цименти – нормално втвърдяващи – означават се с „N“ и бързо втвърдяващи – с „R“. В зависимост от състава им различаваме чисти клинкерни цименти, означават се с CEM I, и цименти с минерални добавки CEM II (А или В). При CEM I съдържанието на портландциментов клинкер в състава на цимента е не по-малко от 95%, при CEM II A – от 80 до 95 %, а при CEM II B – от 65 до 80%. Минерални добавки са фино смлени неорганични материали – гранулирана доменна шлака, пепели от ТЕЦ, млян варовик, естествени пуцолани, микросилициев прах, печени глинести шисти. Най-често видът на цимента се избира в зависимост от условията на работа на строителната конструкция, за която е предназначен.

Чистота на водата за сместа[редактиране | редактиране на кода]

Водата, която се използва за направата на бетонните смеси, трябва да отговаря на изискванията на БДС EN 1008. Счита се, че питейната вода отговаря на тези критерии и може да се използва за бетон. По-често срещани вредни химични съединения, които могат да се съдържат във водите, са:

  • сулфати – предизвикват сулфатна корозия на циментовия камък;
  • хлориди – взаимодействат с компонентите на циментовия камък, като образуват сравнително лесно разтворими съединения, които впоследствие се разтварят и извличат от бетона (аналогично действат нитрати).

Не бива да се използват за направата на бетон и меки води с рН < 4, тъй като предизвикват разтваряне и извличане на калциевия хидроксид (портландит) от структурата на циментовия камък (т. нар. корозия първи вид).

Органичните примеси също не са желани, тяхното влияние може да се оцени по промяната на свойствата на бетона при изготвяне на паралелни проби – с чиста вода и с вода, съдържаща органични примеси. Поради високото съдържание на органични примеси блатните и канализационните води са неподходящи за изготвяне на бетонни смеси.

Добавъчни материали[редактиране | редактиране на кода]

  1. Естествени добавъчни материали – добиват се от естествени находища (кариери) – речен чакъл и пясък, или чрез механична обработка на скални материали (трошен камък и трошен пясък)
  2. Изкуствени добавъчни материали – получават се чрез термична, химична и друг вид обработка от естествени или изкуствени суровини: отпадъчни продукти от промишлеността, котелни пепели, въглищни пепели. Такива материали са перлитов пясък (перлит), вермикулит (получава се от термична обработка на слюда), шистопорит (от глинести шисти), сгурия, термозит (от порьозирана шлака), керамзит (получаван от червена глина) и др.
  3. Недопустимо е използването на морски пясък и почва.

Химически добавки[редактиране | редактиране на кода]

За модифициране на свойствата на бетонната смес и втвърдения бетон се употребяват химични добавки. Това са вещества, които се влагат в малки количества в бетона (до 5% от масата на цимента) и обикновено се дозират в % от масата на цимента. Класификацията на химичните добавки е дадена в БДС EN 934 – 2[2] и е показана по-долу:

  1. Водонамаляващи химични добавки (пластификатори) – предизвикват увеличаване на консистенцията (подвижността) на бетонната смес, без да се увеличава количеството на водата за смесване, запазват консистенцията на сместа при намаляване на количеството на водата или предизвикват двата ефекта едновременно.
  2. Силноводонамаляващи химични добавки (суперпластификатори) – предизвикват силно увеличаване на консистенцията (подвижността) на бетонната смес без да се увеличава количеството на водата за смесване, запазват консистенцията на сместа при силно намаляване на количеството на водата или предизвикват двата ефекта едновременно.
  3. Забавящи свързването химични добавки – увеличават времето за преминаване на бетонната смес от пластично в твърдо състояние.
  4. Ускоряващи свързването химични добавки – намаляват времето за преминаване на бетонната смес от пластично в твърдо състояние.
  5. Въздуховъвличащи – предизвикват умерено въвличане на въздух в бетонната смес – в рамките на 2 – 6%.
  6. Ускоряващи втвърдяването химични добавки – ускоряват темповете на нарастване на ранната якост на бетона, с или без промяна на сроковете на свързване.
  7. Водозадържащи химични добавки – намаляват водоотделянето на бетонните смеси.
  8. Уплътняващи химични добавки – намаляват капилярната абсорбция на бетона.
  9. Забавящи свързването водонамаляващи химични добавки – това са добавки с комбинирано действие, намаляват количеството на водата и увеличават сроковете за преминаване на бетонната смес от пластично в твърдо състояние.
  10. Забавящи свързването силноводонамаляващи химични добавки – намаляват значително количеството на водата и увеличават сроковете за преминаване на бетонната смес от пластично в твърдо състояние.
  11. Ускоряващи свързването водонамаляващи химични добавки – намаляват количеството на водата и съкращават сроковете за преминаване на бетонната смес от пластично в твърдо състояние.

Съществуват и химични добавки, които не са стандартизирани, като например добавки за бетониране при понижени температури (зимно бетониране).

Класификацията на бетона може да бъде извършена по редица признаци.

  1. В зависимост от обемната му плътност той се дели на: лек – обемна плътност от 500 до 1800 kg/m³, олекотен – от 1800 до 2200 kg/m³, обикновен – от 2200 до 2500 kg/m³ и тежък – над 2500 kg/m³.
  2. Според условията на втвърдяване:
    • бетон, втвърдяващ при обикновени (атмосферни) условия
    • ускорено втвърдяващ бетон (чрез топлинна обработка при нормално или повишено налягане)
  3. Според едрината на зърната на едрия добавъчен материал:
    • дребнозърнест бетон – с максимален диаметър на зърната (dmax) < 10 mm (филц бетон)
    • среднозърнест бетон – dmax от 20 до 40 mm – към момента това е най-масово използваният бетон
    • едрозърнест бетон – dmax от 40 до 150 mm (бутобетон) – прилага се при изпълнение на големи по обем елементи, неармирани или с разредена армировка (например язовирни стени).
  4. Според експлоатационните условия (при какви условия ще ги използваме) – по БДС EN 206 – 1/НА:2008
    • бетони от I група – намират се при условия на нормална въздушна среда (до 100 °С), не са в допир с вода и не са подложени на външни атмосферни влияния;
    • бетони от II група – намират се постоянно под вода при положителна температура
    • бетони от III група – подложени са на пряко действие на атмосферните условия, включително и на отрицателни температури
    • бетони от IV група – подложени са на променливо мокрене и сушене при действието на външни атмосферни условия
  5. Според якостта – обикновен и високоякостен.

Други важни показатели[редактиране | редактиране на кода]

  • Сила на огъване.
  • Устойчивост на замръзване – обозначава се с латинската буква „F“ и цифрите 50 – 1000, което показва броя цикли на замръзване и размразяване, които бетонът може да издържи.
  • Водоустойчивост – обозначава се с латинската буква „W“ и цифри от 2 до 20, което показва налягането на водата, което трябва да издържа цилиндърът на пробата от тази марка.

За тестване на бетона за замръзване и водоустойчивост се използват тестови климатични камери.

Класове[редактиране | редактиране на кода]

Клас по якост на натиск – отбелязва се с буквата „В“ и число след нея, показващо минималната характеристична якост на бетона в МРа (мегапаскали). Под характеристична якост се разбира якост с обезпеченост 95%. Например „бетон клас В 20“ означава приблизително, че при проверка на якостта на натиск на бетона 95% от резултатите трябва да са по-високи от 20 МРа. Якостта на натиск на бетона се определя върху пробни тела – кубчета с ръб 150 mm, които отлежават при стандартни условия. Класът по якост на натиск на бетона се определя от проектанта – конструктор. По БДС 7268 – 83, различаваме следните класове бетон В5; B7.5; B10; B12.5; B15; B20; B25; В30; В35; В40; В45; В50; В55 и B60. Съгласно европейския стандарт (който е и български) БДС EN 206 – 1 класовете по якост на натиск на бетона се означават с „С“ и две числа след него – например С 20/25. Това означава, че минималната характеристична якост на бетона, определена върху пробни тела – цилиндри с диаметър на основата 150 mm и височина 300 mm, е 20 МРа, а минималната характеристична якост, определена върху кубчета с ръб 150 mm, е 25 МРа.

Аналогично се определят класове по якост на опън. Отбелязват се с Bt – Bt0.5; Bt1.0; Bt1.5; Bt2.0; Bt2.5; Bt3.0; Bt3.5 и Bt4.0. Якостта на опън на бетона има важно значение при конструкции и/или елементи, при които не трябва да се допуска образуване на пукнатини – резервоари, тръбопроводи.

Класът на бетона по якост на опън при огъване се означава с Bf, по БДС EN 206 – 1/НА:2008 имаме класове от Bf 1.5 до Bf 6.0.[3] Якостта на опън при огъване на бетона е от значение при съоръжения от типа пътни настилки и самолетни писти.

Мразоустойчивост на бетона е способността му да запазва якостта си или да я променя до известни граници под действието на циклично замразяване и размразяване във водонапито състояние. В зависимост от мразоустойчивостта си бетоните също се разделят на класове, отбелязват се с F и число, посочващо броя на циклите замразяване и размразяване, при които якостта на натиск не се намалява с повече от 15%, а загубата на маса на пробните тела вследствие на обрушване от леда не надхвърля 5%. По стандарт класовете по мразоустойчивост са F50; F75; F100; F150; F200.

Водонепропускливостта на бетона е свойството му да не пропуска вода под налягане. Тук отново се различават класове на бетона – този път по водонепропускливост. Водонепропускливостта е от значение за конструкции, които ще бъдат в контакт с вода. Класът по водонепропускливост се избира в зависимост от размерите (дебелината) на конструкцията и стойността на хидростатичното налягане. Отбелязва се с W и число, указващо най-голямото водно налягане в мегапаскали, при което 4 от общо 6 пробни тела не са пропуснали вода от страната, срещуположна на водния напор – W0.2; W0.4; W0.6; W0.8; W1.0. Класът на бетона по якост на натиск е свързан с плътността на структурата му. Оттам идва и връзка между класа по якост на натиск и класа по водонепропускливост. Обикновено клас В25 има клас по водонепропускливост W0.6.

Класът на бетона се избира в зависимост от вида на конструкцията и условията на експлоатация.

Concrete pouring 0020.jpg Общомедия разполага с мултимедийно съдържание за

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *