Что лучше металлическая или композитная арматура: Сравнение композитной и металлической арматуры. Какая арматура лучше: стеклопластиковая или стальная?
Сравнение композитной арматуры и металлической
Для укрепления бетона используется арматура разных видов. Какая из них лучше? Что выбрать: стеклопластиковую или металлическую арматуру? Чтобы дать точный ответ на эти вопросы, стоит основательно разобраться в преимуществах этих материалов.
Стеклопластиковая или композитная арматура: особенности
Для изготовления композитной арматуры используют стекловолокно, базальт и высокопрочный пластик. Волокна в бухтах могут иметь диаметр от 4 до 12 мм. На волокна наносятся ребра, чтобы обеспечить максимальное сцепление арматуры с конструкцией.
По характеристикам композитная арматура по многим критерием превосходит металлическую, так как она имеет меньший вес, высокую прочность, большую устойчивость к коррозии. К преимуществам стеклопластиковой арматуры отнести можно также влагоустойчивость, диэлектрические свойства, большой выбор сечений, легкость транспортировки. Только вот композитные изделия используются не во всех сферах деятельности. Например, для конструкций с высокими нагрузками на изгибах, в перекрытиях они не подходят. В основном, композитную арматуру используют для армирования ж/д путей, ленточного фундамента, береговых сооружений, мостов, канализационных конструкций и т.п.
Монтаж стеклопластиковой арматуры производится с помощью специальных хомутов, сваривать такие изделия нельзя. Пруты также сгибать не рекомендовано, иначе можно повредить стержень.
Немаловажен тот факт, что эта арматура требует особых условий производства, использование специального оборудования, сырья. Это дает гарантии того, что приобрести композитный материал, изготовленный кустарным способом невозможно.
Металлическая арматура: особенности
Изготавливают ее в виде стальных прутов с рифленой или гладкой поверхностью. В зависимости от области использования выделяют несколько видов этих изделий:
· Рабочие. Отличаются устойчивостью к нагрузкам на растяжение. Нашли применение в изготовлении ригелей, фундаментов и т. п.
· Монтажные. Эти изделия используются при возведении каркасов.
· Распределительные. Способны равномерно распределить нагрузку и удерживать в нужном положении конструкцию.
· Анкерные. Применяется для закладных конструкций.
· Продольные. Купируют растягивающие нагрузки, что не допускает возникновения трещин.
· Поперечные. Не допускают разрыва от скользящих напряжений.
Стальная арматурная продукция имеет разный класс, диаметр. Также маркируются изделия в зависимости от прочности структуры, класса устойчивости к коррозии. Реализуются они в пачках или связках с прутами до 12 м в длину.
К преимуществам стальной арматуры можно отнести отличные адгезионные свойства, огнестойкость, универсальность, устойчивость к деформациям. Огромным достоинством является возможность монтажа как путем связки проволокой, так и сварки.
Что касается недостатков, то стоит отметить большой вес, теплопроводность, подверженность коррозии.
Ценовой аспект
Поскольку материалы имеют различную плотность, то и определить, какая из арматур дешевле, выгоднее с точностью нельзя. Нужно учитывать параметры расхода бетона, качество готовых конструкций, затраты на транспортировку.
Что надежнее?
Изучая все достоинства и недостатки металлической и композитной арматуры можно сказать одно – выбор зависит от нагрузок конструкции. Например, для многоэтажных построек использовать стоит металлические изделия с нужным диаметром сечения. Как упоминалось ранее, стеклопластиковый материал в силу своих характеристик лучше всего подойдет для устройства ленточного фундамента. Кроме того, многие застройщики стали успешно практиковать комбинирование материалов. К примеру, основной каркас сваривается из металлических прутов и заполняется стеклопластиковыми стержнями.
Какая арматура лучше металлическая или стеклопластиковая: применение,сравнение, плюсы и минусы
2018.04.19
В нашем быстро развивающемся мире технологий, всегда есть нужда в альтернативных вариантах, будь то сырье или готовый материал во всех областях промышленности. Речь идет о выборе между чем-то, в нашем случае поговорим об арматуре. Сейчас без её использования не обходится не одна строительная сфера, ну если вы, конечно, не строите деревянный дом без гвоздей. В нашем примере мы рассмотрим строительство железобетонных конструкций, домов и дорог, из металлических и стеклопластиковых элементов, а также поговорим о свойствах, отличиях и областях их применения.
СОДЕРЖАНИЕ:
- Свойства и недостатки
- Сравнение стеклопластика с металлом
- Характеристики
- Применение стеклопластиковых материалов
Начнем, пожалуй, с самого распространенного вида металлической арматуры, область ее применения достаточно широка (от строительства железобетонных конструкций до полотна дорог), одним из основных преимуществ металла является то, что он поддается сварке, что дает возможность сделать наиболее прочные соединения между прутьями.
Также она является проводником, благодаря чему ее использование в качестве заземления можно отнести, как к достоинствам, так и к недостаткам. Давайте попробуем разобраться, что для вас важнее: во-первых, поставить целью добиться заземления какого-то объекта, то конечно её использование не оставляет никаких сомнений, соответственно, если металлическая арматура используется в качестве заземления, то это подвергает ее окислению, уменьшая срок службы, плюс к этому не забываем, что метал подвержен коррозиям; во-вторых, если вашей целью не стоит вопрос заземлять что-то и варить соединения, то конечно же отдаем преимущество композитной.
Свойства и недостатки
Стеклопластиковая арматура изготавливается из стекловолокна и полимерных смол, её преимущество легкий вес и сверхпрочность, внутренний стержень обернут спиралевидными ребрами с помощью которых осуществляется надежное сцепление с бетоном. К самым важным недостаткам относятся, пожалуй, это отсутствие текучести при растяжении. В результате этого исключается возможность изменять форму без нагрева.
Еще одним недостатком будет фактор нанесения вреда здоровью, при резке данного композита образуется пыль, состоящая из мелких стеклочастиц. При распылении подобной стеклопыли есть вероятность занесения заноз, повреждения глаз и дыхательной системы.
Арматура стеклопластиковая и металлическая сравнение
Если сравнивать композитную и металлическую, рассмотрим такие качества, как легкий вес, сверхпрочность и коррозийную стойкость, что помогает создавать более крепкие каркасные сооружения. Отличительные характеристики которыми обладают композитные элементы, объясняются особенностями внутренней структурной сетки будут следующими:
По сравнению со сталью, композит превосходит достаточно большим модулем упругости превышающий аналогичные характеристики изделий из металла примерно в 4 раза. Из этого следует что уровень прогиба под влиянием нагрузок у композита будет значительно выше нежели у прутков из металла. При армировании данных элементов в полотна дорого, откосов и фундамента подобные свойства не критичны. Но для использования в напряженных конструкциях предпочтительнее использовать сталь.
Полимерная арматура превосходит, стальную по параметрам, на сжатие на 40%, на растяжение на 30%
Еще одним аргументом будет прочностной потенциал удельной прочности в 10 раз превышающий стальные элементы.
Внешний слой обволакивает внутренний стержень и образует спираль, которая обеспечивает высокую связку с бетоном.
Сравнение характеристик арматуры
Каркасные сооружения из стеклопластика несут в себе ряд преимуществ:
Сравнение характеристик:
- полимер не обладает электропроводностью, поэтому в конструкции из этого композита отсутствует наводящий ток и магнитные поля, в результате исключаются радиопомехи;
- влияние стеклопластика на окружающую среду на сегодняшний день не зафиксировано; не обладает токсичностью при распаде, не обсорбирует радиацию даже спустя много лет нахождения в экстремальной бетонной среде.
При соответствии изделия всем техническим нормам сертификации, температурный коэффициент расширения с бетоном одинаков, не зависимо от изменений температуры окружающей среды.
Пропорции диаметров прутков при армировании каркаса фундамента
Напоследок хотелось отметить еще одно явное преимущество, объемы транспортировки стеклопластика. Вы только представьте, что перед вами стоит задача доставить два камаза (в одном грузовике стальные элементы, в другом стеклопластиковые). Если к примеру загрузить 5 метров стальных прутков весом 10 кг и взять пруток полимера той же длинны весом 2 кг. Чувствуете разницу? Загрузив тонну металла, у вас будет половина кузова, а если взять тонну стеклопластика, грузовик будет набит доверху. Вывод очевиден.
Применение композитной арматуры
На сегодняшний день использование полимеров в больших масштабах не ограничивается в промышленном и гражданском строительстве, на малоэтажных и коттеджных объектах. Уникальными особенностями, которыми обладает этот материал, позволяет применять ее в самых различных областях, таких как строительство дорожного полотна (используется для устройства покрытий, субъектов), так же практикуется применение в укреплении откосов.
Полимерный материал рекомендовано использовать в сейсмоопасных зонах 7 — 9 баллов в качестве основного эксплуатируемого материала бетонных сооружений.
При выборе материала нужно задать себе вопрос, а что я собираюсь делать, какой объект строить. Из всего, что мы выяснили по ходу нашего сравнения, следует сделать вывод не о том, что лучше, а какой материал целесообразнее использовать в конкретных случаях.
Ниже приведены несколько информационных роликов, которые будут интересны для вас, если вам понравилась эта статья, просим поставить лайк или оставить отзывы на сайте. Спасибо.
Please enable JavaScript to view the comments powered by Disqus.
Среди наших партнеров
4 Преимущества использования композитов по сравнению с традиционными материалами
Поиск
Поиск
Материалы
Композиты сочетают в себе лучшие качества традиционных материалов. Два компонента композита включают армирование (часто высокоэффективное волокно, такое как углерод или стекло) и матрицу (например, эпоксидный полимер). Матрица связывает армирование вместе, чтобы объединить преимущества обоих исходных компонентов.
Композиты улучшают процесс проектирования и конечные продукты в различных отраслях, от аэрокосмической до возобновляемой энергетики. С каждым годом композиты продолжают заменять традиционные материалы, такие как сталь и алюминий. По мере снижения стоимости композитов и повышения гибкости конструкции армированные волокнами композиты, такие как углеродное волокно и стекловолокно, открывают перед инженерами новые возможности проектирования.
Пожалуй, самым большим преимуществом композитов является их высокое отношение прочности к весу. Углеродное волокно весит примерно на 25% больше, чем сталь, и на 70% больше, чем алюминий, и намного прочнее и жестче, чем оба материала по весу. Высококлассные автомобильные инженеры используют композиты для снижения веса автомобиля на целых 60% при одновременном повышении безопасности при столкновении; многослойные композитные ламинаты поглощают больше энергии, чем традиционная однослойная сталь. Использование композитных материалов выгодно как производителям, так и потребителям.
Композиты никогда не ржавеют, независимо от окружающей среды (хотя они подвержены коррозии при соединении с металлическими частями). Композиты имеют меньшую вязкость разрушения, чем металлы, но большую, чем большинство полимеров. Их высокая стабильность размеров позволяет им сохранять свою форму в горячем или холодном, влажном или сухом состоянии. Это делает их популярным материалом для наружных конструкций, таких как лопасти ветряных турбин. Инженеры выбирают композиты вместо традиционных материалов, чтобы снизить затраты на техническое обслуживание и обеспечить долгосрочную стабильность, что является основным преимуществом для конструкций, рассчитанных на десятилетия.
Композиты предлагают варианты дизайна, которые трудно реализовать с использованием традиционных материалов. Композиты позволяют консолидировать детали; одна композитная деталь может заменить полную сборку металлических деталей. Текстуру поверхности можно изменить, чтобы имитировать любую отделку, от гладкой до текстурированной. Более 90% корпусов прогулочных лодок изготавливаются из композитов, отчасти потому, что из стекловолокна можно формовать лодки самых разных форм. Эти преимущества экономят производственное время и снижают затраты на техническое обслуживание в долгосрочной перспективе.
В прошлом инженерам приходилось использовать сложный процесс укладки для изготовления композитов, который отнимал много времени и ограничивал геометрию конструкции. Цифровое композитное производство (DCM) изменило это. DCM — это запатентованный производственный процесс, позволяющий изготавливать композитные детали без ручного труда. С DCM композиты могут быть адаптированы в трех измерениях локально или глобально, создавая необходимую прочность, плотность и гибкость для проекта. DCM позволяет инженерам проектировать гибкость 3D-печати в сочетании с высокими характеристиками композитов.
Корпуса большинства прогулочных лодок изготавливаются из композитных материалов, таких как стекловолокно и углеродное волокно.Композиты с металлической матрицей | Machine Design
Композиты с металлической матрицей либо используются, либо создаются в качестве прототипов для космических челноков, коммерческих авиалайнеров, электронных подложек, велосипедов, автомобилей, клюшек для гольфа и множества других приложений. В то время как подавляющее большинство из них представляют собой композиты с алюминиевой матрицей, все большее число приложений требуют матричных свойств суперсплавов, титана, меди, магния или железа.
Как и все композиты, композиты с алюминиевой матрицей представляют собой не отдельный материал, а семейство материалов, жесткость, прочность, плотность, а также тепловые и электрические свойства которых можно адаптировать. Сплав матрицы, материал армирования, объем и форма армирования, расположение армирования и метод изготовления могут варьироваться для достижения требуемых свойств. Однако, независимо от вариаций, алюминиевые композиты обладают преимуществом низкой стоимости по сравнению с большинством других MMC. Кроме того, они обладают отличной теплопроводностью, высокой прочностью на сдвиг, превосходной стойкостью к истиранию, работой при высоких температурах, негорючестью, минимальным воздействием топлива и растворителей, а также возможностью формовки и обработки на обычном оборудовании.
Алюминиевые ММС производятся литьем, порошковой металлургией, усилением на месте и прессованием фольги и волокна. Продукция неизменно высокого качества теперь доступна в больших количествах, а крупные производители расширяют производство и снижают цены. Они применяются в тормозных дисках, поршнях и других автомобильных компонентах, а также в клюшках для гольфа, велосипедах, компонентах машин, электронных подложках, экструдированных уголках и каналах, а также во многих других конструкционных и электронных устройствах.
Композиты из суперсплавов, армированные волокнами из вольфрамового сплава, разрабатываются для компонентов реактивных турбинных двигателей, работающих при температурах выше 1830 °F.
Композиты графит/медь обладают адаптируемыми свойствами, подходят для высоких температур на воздухе и обеспечивают отличные механические характеристики, а также высокую электрическую и теплопроводность. Они обеспечивают более легкую обработку по сравнению с титаном и меньшую плотность по сравнению со сталью. Были изготовлены пластичные сверхпроводники с матрицей из меди и сверхпроводящими нитями из ниобия-титана. Медь, армированная частицами вольфрама или частицами оксида алюминия, используется в радиаторах и электронных корпусах.
Титан, армированный волокнами карбида кремния, разрабатывается в качестве материала обшивки для национального аэрокосмического самолета. Нержавеющая сталь, инструментальная сталь и инконель входят в число матричных материалов, армированных частицами карбида титана, и из них изготавливаются вытяжные кольца и другие высокотемпературные коррозионно-стойкие компоненты.
По сравнению с монолитными металлами ММК имеют:
- Более высокое отношение прочности к плотности
- Более высокое отношение жесткости к плотности
- Лучшее сопротивление усталости
- Лучшее сопротивление повышенным температурам
- — Более высокая прочность
- — Меньшая скорость ползучести
- Более низкий коэффициент теплового расширения
- Лучшая износостойкость
:
- Повышенная термостойкость
- Огнестойкость
- Повышенная поперечная жесткость и прочность
- Отсутствие влагопоглощения
- Более высокая электрическая и теплопроводность
- Лучшая стойкость к излучению
- Отсутствие дегазации
- Возможность изготовления нитевидных и армированных частицами MMC с помощью обычного металлообрабатывающего оборудования.
К недостаткам ММК по сравнению с монолитными металлами и полимерными матричными композитами относятся:
- Более высокая стоимость некоторых систем материалов
- Относительно несовершенная технология
- Сложные методы изготовления волокнистых армированных систем (кроме литья)
- Ограниченный опыт обслуживания
Многочисленные комбинации матриц и армирования были опробованы с тех пор, как в конце 1950-х годов началась работа над MMC. Однако технология MMC все еще находится на ранних стадиях развития, и, несомненно, появятся другие важные системы.
Армирование: Армирование MMC можно разделить на пять основных категорий: непрерывные волокна, прерывистые волокна, усы, частицы и проволока. За исключением проволоки, которая представляет собой металл, арматура обычно представляет собой керамику.
Основные непрерывные волокна включают бор, графит (углерод), оксид алюминия и карбид кремния. Волокна из бора изготавливаются путем химического осаждения из паровой фазы (CVD) этого материала на вольфрамовую сердцевину. Также использовались углеродные сердечники. Эти относительно толстые мононити доступны диаметром 4,0, 5,6 и 8,0 мил. Для замедления реакций, которые могут происходить между бором и металлами при высокой температуре, иногда используются покрытия волокон из таких материалов, как карбид кремния или карбид бора.
Мононити из карбида кремния также изготавливаются методом CVD с использованием вольфрамовой или углеродной сердцевины. Японская комплексная пряжа, обозначенная производителем как карбид кремния, также имеется в продаже. Однако этот материал, полученный пиролизом металлоорганических волокон-предшественников, далек от чистого карбида кремния, и его свойства существенно отличаются от свойств мононити карбида кремния.
Непрерывные волокна оксида алюминия можно приобрести у нескольких поставщиков. Химический состав и свойства различных волокон существенно различаются. Графитовые волокна изготавливаются из двух исходных материалов: полиакрилонитрила (ПАН) и нефтяного пека. Предпринимаются попытки получить графитовые волокна из каменноугольного пека. Доступны графитовые волокна с широким диапазоном прочности и модуля.
Ведущими армирующими волокнами в настоящее время являются глинозем и алюмосиликат. Оба первоначально были разработаны как изоляционные материалы. Основным материалом вискеров является карбид кремния. Ведущий коммерческий продукт США производится путем пиролиза рисовой шелухи. Карбид кремния и карбид бора, основные армирующие частицы, получают из коммерческой абразивной промышленности. Частицы карбида кремния также производятся как побочный продукт процесса, используемого для изготовления усов из этого материала.
Ряд металлических проволок, в том числе вольфрамовая, бериллиевая, титановая и молибденовая, использовались для усиления металлических матриц. В настоящее время наиболее важным армированием проволоки является вольфрамовая проволока из суперсплавов и сверхпроводящих материалов, содержащих ниобий-титан и ниобий-олово в медной матрице. Упомянутые выше подкрепления являются наиболее важными в настоящее время. Многие другие были опробованы за последние несколько десятилетий, а третьи, несомненно, будут разработаны в будущем.
Матричные материалы и ключевые композиты: В качестве матриц использовались многочисленные металлы. Наиболее важными были алюминиевые, титановые, магниевые и медные сплавы и суперсплавы.
Наиболее важными системами MMC являются:
- Алюминиевая матрица
- Непрерывные волокна: бор, карбид кремния, оксид алюминия, графит
- Непрерывные волокна: оксид алюминия, алюмосиликат
- Карб. , карбид бора
- Матрица магния
- Непрерывные волокна: графит, глинозем
- Усы: Силиконовый карбид
- . карбид
- Медная матрица
- Непрерывные волокна: графит, карбид кремния
- Проволоки: ниобий-титан, ниобий-олово
- Твердые частицы: карбид кремния, карбид бора, карбид титана.
- Матрицы из суперсплавов
- Проволоки: вольфрамовые
Характеристики и особенности конструкции: Превосходные механические свойства MMC определяют их использование. Однако важной характеристикой MMC, которая является общей с другими композитами, является то, что путем соответствующего выбора матричных материалов, армирования и ориентации слоев можно адаптировать свойства компонента для удовлетворения потребностей конкретной конструкции.
Например, в широких пределах можно указать прочность и жесткость в одном направлении, коэффициент расширения в другом и так далее. Это редко возможно с монолитными материалами.
Монолитные металлы имеют тенденцию быть изотропными, то есть иметь одинаковые свойства во всех направлениях. Однако некоторые процессы, такие как прокатка, могут придавать анизотропию, так что свойства меняются в зависимости от направления. Напряженно-деформационное поведение монолитных металлов типично упругопластическое. Большинство конструкционных металлов обладают значительной пластичностью и вязкостью разрушения.
Широкий спектр MMC имеет резко различающиеся свойства. Факторы, влияющие на их характеристики, включают:
- Свойства, форма и геометрическое расположение арматуры
- Объемная доля арматуры
- Свойства матрицы, включая эффекты пористости
- Свойства поверхности раздела арматура-матрица
- История остаточных механических напряжений композита
- Возможна деградация арматуры в результате химических реакций при высоких температурах, а также механических повреждений от обработки, ударов и т.п.
ГМК, армированные частицами, как и монолитные металлы, имеют тенденцию быть изотропными. Однако присутствие хрупкого армирования и, возможно, оксидов металлов имеет тенденцию снижать их пластичность и вязкость разрушения. Непрерывное развитие может уменьшить некоторые из этих недостатков.
Свойства материалов, армированных нитевидными кристаллами, сильно зависят от их ориентации. Случайно ориентированные усы создают изотропный материал. Однако такие процессы, как экструзия, могут ориентировать усы, что приводит к анизотропным свойствам. Усы также снижают пластичность и вязкость разрушения.
ГМК, армированные ориентированными волокнами, обладают анизотропными свойствами. Они прочнее и жестче в направлении волокон, чем перпендикулярно им. Однако поперечная прочность и жесткость однонаправленных MMC (материалов, все волокна которых ориентированы параллельно одной оси) часто достаточно велики для использования в таких компонентах, как элементы жесткости и распорки. Это одно из основных преимуществ ММК перед ПМК, которые редко можно использовать без поперечной арматуры.
Поскольку модуль и прочность металлических матриц значительны по сравнению с большинством армирующих волокон, их вклад в поведение композита важен. Кривые напряжения-деформации MMC часто демонстрируют значительную нелинейность, связанную с текучестью матрицы.
Другим фактором, оказывающим значительное влияние на поведение армированных волокном металлов, является часто большая разница в коэффициентах расширения между двумя составляющими. Это может вызвать большие остаточные напряжения в композитах, когда они подвергаются значительным изменениям температуры. Фактически, во время охлаждения от температуры обработки термические напряжения матрицы часто бывают достаточно серьезными, чтобы вызвать деформацию. Большие остаточные напряжения также могут создаваться механическим нагружением.
Хотя волокнистые ММС могут иметь кривые напряжения-деформации с некоторой нелинейностью, они по существу являются хрупкими материалами, как и ПМС. При отсутствии пластичности для снижения концентрации напряжений, конструкция соединения становится критическим фактором при проектировании. Разработаны многочисленные способы соединения ММК, в том числе металлургическое и полимерное скрепление, механические крепления.
Методы изготовления: Методы изготовления являются важной частью процесса проектирования всех конструкционных материалов, включая MMC. В этой критической области ведется большая работа. Вероятны значительные улучшения существующих процессов и разработка новых.
Современные методы можно разделить на две основные категории: первичные и вторичные. Первичные методы изготовления используются для создания MMC из его компонентов. Полученный материал может иметь форму, близкую к желаемой окончательной конфигурации, или может потребовать значительной дополнительной обработки, называемой вторичным изготовлением, такой как формование, прокатка, металлургическое соединение и механическая обработка. Используемые процессы зависят от типа армирования и матрицы.
Важным моментом являются реакции, которые могут происходить между армированием и матрицей во время первичной и вторичной обработки при высоких температурах, необходимых для плавления и формирования металлов. Это накладывает ограничения на типы компонентов, которые могут быть объединены различными процессами. Иногда на арматуру можно успешно наносить барьерные покрытия, что позволяет комбинировать их с матрицами, которые в противном случае были бы слишком реакционноспособными. Например, нанесение покрытия, такого как карбид бора, позволяет использовать борсодержащие волокна для армирования титана. Возможные реакции между матрицами и арматурой, даже с покрытием, также являются важным критерием при оценке температур и соответствующих периодов времени, которым ММС могут подвергаться в эксплуатации.
Монофиламентные волокна относительно большого диаметра, такие как карбид бора и кремния, были включены в металлическую матрицу путем горячего прессования слоя параллельных волокон между фольгой для создания однослойной ленты. При этой операции металл обтекает волокна и происходит диффузионное соединение. Та же процедура может быть использована для производства диффузионно-скрепленных ламинатов со слоями волокон, ориентированными в заданных направлениях, чтобы удовлетворить требованиям жесткости и прочности для конкретной конструкции. В некоторых случаях ламинаты производятся путем горячего прессования однослойных лент, что можно считать вторичной операцией.
Однослойные ленты также производятся путем напыления металлической плазмы на коллимированные волокна с последующим горячим прессованием. Структурные формы могут быть изготовлены путем ползучести и сверхпластического формования ламинатов в штампе. Альтернативный процесс заключается в размещении волокон и несвязанной фольги в пресс-форме и горячем прессовании сборки.
Боро-алюминиевые стойки, используемые на космическом челноке, изготовлены из монослойной фольги, обернутой вокруг оправки и подвергнутой горячему изостатическому прессованию для диффузионного соединения слоев фольги вместе и, в то же время, для диффузионного соединения композитного ламината с титановыми концевыми фитингами.
Композиты могут быть изготовлены путем пропитки жидким металлом ткани или предварительно подготовленной волокнистой конфигурации, называемой заготовкой. Часто для удержания волокон в нужном положении используются керамические или органические связующие материалы. Последний сжигается до или во время инфильтрации. Инфильтрацию можно проводить под вакуумом, под давлением или в обоих случаях. Инфильтрацию под давлением, которая способствует смачиванию волокон матрицей и уменьшению пористости, часто называют литьем под давлением.
Литые MMC теперь стабильно имеют форму сетки или сетки-сетки, повышенную жесткость и прочность, а также совместимость с традиционными технологиями производства. Они также неизменно дешевле, чем те, которые производятся другими методами, доступны от широкого круга производителей и обеспечивают стабильность размеров как крупных, так и мелких деталей.
Например, компания Duralcan усовершенствовала свою технологию «смесителя для мороженого» и средства управления технологическим процессом до такой степени, что теперь она производит до 25 миллионов фунтов алюминиевых композитных заготовок в год. Литье по выплавляемым моделям было модифицировано в Cercast для отливки заготовок Duralcan в сложные сетчатые детали. Литье под давлением позволяет компании Alcoa получать сетчатые формы с исключительными свойствами, а инфильтрация без давления используется в Lanxide Corp. для изготовления компонентов сетчатой формы.
В настоящее время наиболее распространенным методом изготовления композитов графит/алюминий и графит/магний является инфильтрация. Графитовая пряжа сначала проходит через печь, чтобы сжечь любую проклейку, которая могла быть нанесена. Затем он проходит процесс CVD, при котором наносится покрытие из титана и бора, что способствует смачиванию матрицей. Затем он сразу же проходит через ванну или фонтан расплавленного металла, образуя инфильтрированный пучок волокон, известный как «проволока». Пластины и другие конструкционные формы производятся на вторичной операции путем помещения проволоки между фольгой и ее прессования, как это делается с мононитями. Недавняя разработка «воздушно-стабильных» покрытий позволяет использовать другие процессы пропитки, такие как литье, устраняя необходимость в «проволоках» в качестве промежуточного этапа. Другие подходы находятся в стадии разработки.
Особенно важным вторичным методом изготовления композитов с титановой матрицей является сверхпластическое формование/диффузионное соединение (SPF/DB). Для снижения производственных затрат разрабатываются непрерывные процессы, такие как пултрузия и склеивание горячим валком.