Измерительные уровни – 14. Измерение уровней при помощи широкополосного измерителя уровня (шиу). Способы включения шиу.
Измерение уровня | КИПиА Портал
Понятие уровень, единицы измерения.
В производственных процессах химической промышленности большое значение имеет контроль за уровнем жидкостей и твердых сыпучих материалов в технологических аппаратах, различных емкостях и в резервуарах.
Измерение уровня в технологических аппаратах.
Измерение уровня в технологических аппаратах позволяет контролировать в них вещества, необходимого для протекания технологических процессов в требуемом направлении. Запас вещества в аппаратах должен быть вполне определенным и значительное уменьшение или увеличение его по сравнению с номинальным значением может привести к нарушению производственного процесса. Измерение уровня в аппаратах производится обычно в относительно небольшом диапазоне его измерения, причем высокая точность при измерении не требуется. Необходимо следить лишь за тем, чтобы уровень вещества не был больше или меньше допустимых значений.
Измерение уровня в емкостях и резервуарах.
Измерение уровня в емкостях и резервуарах производится с целью учета количества находящегося в них вещества. В резервуарах больших размеров приходится измерять уровень, изменяющийся в большом диапазоне. Кроме того, точность измерения уровня должна быть достаточно высокой.
— Уровень измеряется в единицах длины — метрах. На заводе его часто измеряют в %.
— Измерение уровня вещества дает возможность, как уже говорилось выше, производить расчет количества и массы вещества для его учета.
Определение количества жидкости или сыпучих материалов.
При постоянном по высоте сечении емкости (резервуара) объем продукта может быть получен умножением площади поперечного сечения на значение уровня вещества, поэтому измерение объема здесь сводится к измерению уровня.
При переменной площади поперечного сечения резервуара по высоте надо знать зависимость этой площади от высоты.
Определение массы вещества.
Измерение массы вещества производится путем определения его объема и измерения плотности вещества. Умножая объем на плотность, получают массу вещества. Это умножение производят или вручную или автоматически при помощи приборов.
Методы измерения уровня, приборы для его измерения.
В производстве для контроля уровня веществ применяют различные уровнемеры, работающие на различных методах измерения уровня.
1. Уровнемеры с визуальным отсчетом;
2. Буйковые и поплавковые уровнемеры;
3. Гидростанические уровнемеры;
4. Дифманометрические уровнемеры;
5. Радиоактивные уровнемеры;
6. Уровнемеры раздела фаз;
7. Акустические уровнемеры;
8. Емкостные;
9. Уровнемеры сыпучих веществ.
Уровнемеры с визуальным отсчетом.
Самый простой способ измерения уровня, основанный на методе сообщающихся сосудов. То есть к технологическому аппарату через запорные вентили подключается стеклянная трубка, по которой и наблюдается столб жидкости.
Недостатки: имеется возможность загрязнения трубки, вплоть до полного исчезновения видимости уровня, а также возможность образования воздушных пузырьков внутри стеклянной трубки, что устраняется с помощью дренажного вентиля.
Применяется для контроля уровня жидких и прозрачных веществ по месту.
Буйковые и поплавковые уровнемеры.
Нашли широкое применение для измерения уровня жидкости, как в технологических аппаратах, так и в резервуарах у нас на предприятии.
Принцип действия основан на возникновении выталкивающей силы при погружении поплавка или буйка в жидкость (закон Архимеда), которая либо преобразуется в стандартный токовый сигнал 4-20 мА, либо пневматический 0.2-1.0 кгс/см2 для последующей передачи информации на вторичные приборы, по которым оператор наблюдает показания уровня. Гораздо реже можно встретить поплавковые уровнемеры типа УДУ с контролем показаний по месту.
Среди буйковых уровнемеров широко используются такие как Сапфир ДУ, Fischer, имеющие стандартный токовый выходной сигнал 4-20 мА, работающие в комплекте с электронными вторичными приборами, как Ш-711, Ремиконт, МОД-30, дающими возможность не только наблюдать уровень, но и получить сигнализацию и блокировку по различным уставкам с помощью дополнительных устройств, таких как УАС, УЗС.
При работе в зимнее время эти уровнемеры нуждаются в обогреве по причине возможности образования наледи, как на внутренних элементах самого прибора, так и в направляющей трубе, в которой находится буек, возникающей при колебаниях температуры, как продукта, так и окружающей среды.
Среди поплавковых уровнемеров применение нашли УБП, УДУ, имеющие стандартный выходной сигнал 0.2-1.0 кгс/см2, работающие в комплекте с вторичными приборами типа ПВ10.1, ППВ1.1. Эти приборы не нуждаются в обогреве. В настоящее время на заводе ведется замена устаревших пневматических приборов КИП на более современные приборы, имеющие лучшие характеристики точности показаний и дающие больше возможностей по обработке информации от датчиков.
Одним из таких приборов является уровнемер ENRAF голландской фирмы. Точность измерения уровня составляет 0.1 мм. Это очень чувствительный прибор-преобразователь силы. Он постоянно взвешивает вес поплавка и сравнивает с уставкой, которая представляет собой вес поплавка минус выталкивающая сила. Если вес поплавка равен уставке, то прибор считает, что поплавок на уровне.
Прибор показал надежную работу на предприятии. Основные эксплуатационные требования: обогрев в зимнее время на резервуарах, где продукт – газ, а также отсутствие ударов вибраций и т. п. из-за которых выходит из строя чувствительный элемент или прибор сбивается. При остановке резервуара на ремонт необходимо перед демонтажем прибора: поднять поплавок, отключить питание 220в, заблокировать прибор механически.
Уровень раздела фаз.
Принцип действия основан на разных электропроводностях жидкостей. В емкость устанавливается электрод, который кабелем соединяется с вторичным прибором Ф-70. В качестве 2-го электрода используется сам корпус емкости. Применяется для разделения 2-х фаз электропроводной воды, от неэлектропроводной, с последующим отводом воды из емкости. Важным условием нормальной работы прибора является обеспечение герметичности конструкции электродов.
Гидростатические уровнемеры.
Гидростатический метод измерения уровня основан на том, что в жидкости существует гидростатическое давление, пропорциональное уровню, которое преобразуется в стандартный токовый сигнал 4-20 мА. Прибор нуждается в обогреве в зимнее время. Пример: Сапфир ДГ.
Дифманометрические уровнемеры.
Применяются для измерения уровня жидкости, как под атмосферным, так и под избыточным давлением. Каждому значению уровня жидкости в емкости соответствует определенный перепад давления, который измеряется прибором. Прибор нуждается в обогреве в зимнее время. Давление в аппарате не влияет на результат измерения, т. к. оно одинаково воздействует на «+» и «-» камеры. При работе на агрессивных средах, трубки между аппаратом и разделительными сосудами продувают воздухом или инертным газом.
Акустические уровнемеры. ( Ультразвуковые)
Принцип действия основан на локализации уровня звуковыми импульсами, проходящими через газовую среду, отходящую над контролируемой жидкостью и явлении отражения этих импульсов от границы раздела. Разновидностью ультразвукового уровнемера являются радарные уровнемеры типа APEX, обладающие высокой точностью, надежностью и возможностью эксплуатации в различных средах.
Радиоактивные уровнемеры.
Действие таких уровнемеров основано на поглощении γ — лучей при прохождении через слой вещества. Уровнемеры УР-8 используются для измерения уровня жидкостей и твердых сыпучих материалов
.
Емкостные уровнемеры.
Принцип действия емкостных уровнемеров основан на зависимости электрической емкости системы «электрод-измерительная среда» от изменения уровня.
Приборы типа ЭИУ предназначаются для измерения не только жидких, но и твердых сыпучих материалов. Для измерения уровня воды, аммиака, мазута, бензина, керосина и смазочных масел предназначены емкостные уровнемеры ЭИУ-1К, фирмы LABKO 2W
Измерение уровня сыпучих материалов.
Для измерения уровня сыпучих веществ могут применяться некоторые из рассмотренных выше уровнемеров. Кроме того, имеются специальные конструкции приборов.
Приборы измерения уровня | КИПиА Портал
Для измерения уровня жидкостей применяются специальные средства измерений – уровнемеры. Многообразие типов уровнемеров, принцип действия которых основан на различных физических методах, объясняется разнообразием свойств измеряемых жидкостей.
Наибольшее распространение получили следующие виды уровнемеров:
1. Уровнемеры с визуальным отсчетом;
2. Буйковые и поплавковые уровнемеры;
3. Гидростанические уровнемеры;
4. Пьезометрические уровнемеры;
5. Дифманометрические уровнемеры;
6. Радиоактивные уровнемеры;
7. Акустические и ультразвуковые уровнемеры;
8. Емкостные уровнемеры.
Уровнемер с визуальным отсчетом — уровнемер, основанный на визуальном измерении высоты уровня жидкости. Уровень жидкости измеряют в стеклянной трубке, сообщающейся с контролируемым сосудом в нижней, а иногда и в верхней части, или же при помощи прозрачной вставки, помещенной в стенке контролируемого сосуда, например, барабанно-парового котла
Буйковый уровнемер – уровнемер, принцип действия которого основан на измерении перемещения буйка или силы гидростатического давления, действующей на буек (силы Архимеда).
Буек в отличие от поплавка не плавает на поверхности жидкости, а погружен в жидкость и перемещается в зависимости от ее уровня.
Буйковые уровнемеры наиболее часто применяются для измерения уровня однородных, в том числе агрессивных, жидкостей, находящихся при высоких рабочих давлениях (до 32 МПа), широком диапазоне температур (от –200 до +600 °С) и не обладающих свойствами адгезии (прилипания) к буйкам.
Главной особенностью буйковых уровнемеров является возможность измерения уровня границы раздела двух жидкостей.
Недостатком буйковых уровнемеров являются зависимость их точности от плотности и температуры измеряемой среды, ограниченность использования для больших (свыше 16 м) диапазонов измерения уровней жидкостей и жидкостей, обладающих адгезией к буйку.
Пьезометрический уровнемер – уровнемер, принцип действия которого основан на преобразовании гидростатического давления жидкости в давление воздуха, подаваемого от постороннего источника и барботирующего через слой жидкости.
У этого уровнемера чувствительный элемент не находится в непосредственном контакте с измеряемой средой, а воспринимает гидростатическое давление через воздух, что является его достоинством.
Для пьезометрических уровнемеров также характерна погрешность измерения из-за изменения плотности измеряемой среды.
Гидростатический уровнемер – уровнемер, принцип действия которого основан на измерении манометром или напоромером гидростатического давления жидкости, зависящего от высоты ее уровня.
Уровнемеры этого вида обычно используют для измерения неагрессивных, незагрязненных жидкостей, находящихся под атмосферным давлением.
Для измерения уровней агрессивных сред используют специальные разделительные устройства.
Недостатком гидростатических уровнемеров является погрешность измерения при изменении плотности жидкости.
Поплавковый уровнемер – уровнемер, принцип действия которого основан на измерении перемещения поплавка, плавающего на поверхности жидкости (поплавок как бы отслеживает уровень жидкости).
Поплавковые уровнемеры не пригодны для вязких жидкостей (дизельного топлива, мазута, смол) из-за залипания поплавка, обволакивания его вязкой средой.
При измерении уровня криогенных жидкостей из-за кипения верхнего слоя возникает вибрация поплавка, что приводит к искажениям результатов измерения.
Наиболее часто поплавковые уровнемеры используют для измерения уровней в больших открытых резервуарах, а также в закрытых резервуарах с низким давлением.
Применение магнитной связи для передачи перемещения поплавка позволяет герметизировать вывод передачи в измерительный блок, упростить конструкцию, повысить надежность, измерять уровень в резервуарах под давлением.
Дифманометрический уровнемер — гидростатический уровнемер, в котором гидростатическое давление измеряют при помощи дифференциального манометра. Часто используется для измерения уровня в емкостях под избыточным давлением.
Акустический уровнемер — уровнемер, основанный на зависимости интенсивности поглощения или времени распространения акустических колебаний от высоты уровня жидкости или сыпучего вещества
Ультразвуковой уровнемер — акустический уровнемер, работающий на звуковых колебаниях высокой частоты
Емкостной уровнемер – уровнемер, принцип действия которого основан на различии диэлектрической проницаемости жидкости и воздуха.
В связи с этим по мере погружения электродов датчика уровнемера в жидкость изменяется емкость между ними пропорционально уровню жидкости в резервуаре.
Остановимся на некоторых типах уровнемеров подробней.
Уровнемеры буйковые
Настройка уровнемеров на заданные пределы измерения проводится с помощью грузов путем имитации гидростатической выталкивающей силы, соответствующей верхнему пределу измерений.
Расчетное значение давления, соответствующее верхнему пределу измерений,
Расчет массы грузов для буйковых уровнемеров:
для жидкости
для раздела фаз
где d – диаметр буйка испытываемого уровнемера, см; Hmax – верхний предел измерения уровня жидкости, см; ρж – плотность измеряемой жидкости, г/см3; ρ н.ж, ρ в.ж — плотности соответственно нижней и верхней измеряемой жидкости в случае измерения уровня раздела фаз, г/см3.
Пьезометрические уровнемеры.
В пьезометрических системах измерения уровня для продувания через трубку помещенную в жидкость, дозированного расхода воздуха. Принцип действия этого регулятора основан на автоматическом поддержании постоянного перепада давления на дросселе, в результате чего обеспечивается постоянный расход воздуха через этот дроссель.
Принципиальная пьезометрическая схема измерения уровня в открытом резервуаре представлена на рисунке 2, а, б, в, г.
На рисунке 2, д показана принципиальная пьезометрическая схема измерения уровня жидкости в резервуаре, находящемся под давлением. Для исключения влияния давления в резервуаре на показания прибора, измеряющего уровень жидкости, применяется дифференциальный метод измерения с двумя регуляторами расхода. От одного регулятора расхода воздух подается в пьезометрическую трубку, от другого в верхнюю часть резервуара над жидкостью. Разность давлений в трубках, пропорциональная уровню жидкости, измеряется дифманометром.
В системах измерения нижний конец пьезотрубки должен находится на нижнем контролируемом уровне жидкости, но не ниже 80 мм от дна резервуара.
Расход воздуха устанавливается минимальным, чтобы перепад давления на пьезотрубке был возможно меньшим, так как это определяет погрешность измерения пьезометрическим методом.
Минимальный расход воздуха обеспечивается постоянным, без запаздывания, выходом воздуха из пьезометрической трубки при изменениях уровня. Обычно расход воздуха принимается равным 0,1 – 0,2 м3/ч.
Если пренебречь перепадом давления на пьезометрической трубке, то уровень в резервуаре
где Р – давление на манометре М или перепад давления на дифманометре; ρ – плотность жидкости; g – ускорение свободного падения.
В случае, когда измеряется уровень в резервуаре, находящемся под избыточным давлением, давление питания регулятора расхода воздуха, подающего воздух в пьезотрубку, должно быть:
где Ризб – избыточное давление, кПа; Нмаксρg – максимальное гидростатическое давление столба жидкости, кПа.
Рисунок 2. Обвязка пьезометрических уровнемеров.
На рисунке 2, е показан пример обвязки и монтажа пьезометрического уровнемера с подачей промывочной воды в защитную трубу. В этом случае защищается от «обрастания» нижний конец пьезотрубки, который оказывается в зоне промывочной воды и не контактирует с измеряемой жидкостью.
Гидростатические датчики уровня.
Схемы обвязки и работы гидростатических датчиков уровня представлены на рисунке 3, причем правая обвязка применяется при измерении уровня жидкости в емкости, находящейся под избыточным давлением.
Рисунок 3. Обвязка гидростатических уровнемеров.
В этом случае импульсная трубка, идущая к минусовой полости чувствительного элемента, прокладывается от места отбора давления с уклоном в верх, а в нижней части устанавливаются отстойный сосуд и разделитель мембранный РМ.
Рисунок 4. Измерение уровня в котле (100% — 4 мА/0,2 кгс/см2, 0% — 20 мА/1 кгс/см2)
Очень хорошо себя показал данный принцип измерения уровня на очень сложной позиции при измерении уровня воды в котле (рисунок 4). Обвязка при этом не классическая, а на оборот т.е. на плюсовой отбор подается отбор с верней точки котла (импульсная трубка при этом должна быть заполнена водой), на минус с нижней, и задается обратная шкала прибора (на самом приборе или вторичном оборудовании).
Измерение уровней жидкостей.
Уровнем называют высоту заполнения технологического аппарата рабочей средой — жидкостью или сыпучим телом. Уровень рабочей среды является технологическим параметром, информация о котором необходима для контроля режима работы технологического аппарата, а в ряде случаев для управления производственным процессом.
Путем измерения уровня можно получать информацию о массе жидкости в резервуарах. Подобная информация широко используется для проведения товароучетных операций и для управления производственным процессом. Уровень измеряют в единицах длины. Средства измерений уровня называют уровнемерами.
Различают уровнемеры, предназначенные для измерения уровня рабочей среды; измерений массы жидкости в технологическом аппарате; сигнализации предельных значений уровня рабочей среды — сигнализаторы уровня.
По диапазону измерения различают уровнемеры широкого и узкого диапазонов. Уровнемеры широкого диапазона (с пределами измерений 0,5—20 м) предназначены для проведения товароучетных операций, а уровнемеры узкого диапазона [пределы измерений (0÷±100) мм или (0÷ ±450) мм] обычно используются в системах автоматического регулирования.
В настоящее время измерение уровня во многих отраслях промышленности осуществляют различными по принципу действия уровнемерами, из которых распространение получили поплавковые, буйковые, гидростатические, электрические, ультразвуковые и радиоизотопные. Применяются и визуальные средства измерений.
12.2. Визуальные средства измерений уровня
К визуальным средствам измерений уровня относятся мерные линейки, рейки, рулетки с лотами (цилиндрическими стержнями) и уровнемерные стекла.
В производственной практике широкое применение получили уровнемерные стекла. Измерение уровня с помощью уровнемерных стекол (рис. 12.1, а) основано на законе сообщающихся сосудов. Указательное стекло 1 с помощью арматуры соединяют с нижней и верхней частями емкости. Наблюдая за положением мениска жидкости в трубке 1, судят о положении уровня жидкости в емкости, Для исключения дополнительной погрешности, обусловленной различием температуры жидкости в резервуаре и в стеклянной трубке, перед измерением осуществляют промывку уровнемерных стекол. Для этого предусмотрен вентиль 2. Арматура уровнемерных стекол оснащается предохранительными клапанами, обеспечивающими автоматическое перекрывание каналов, связывающих указательное стекло с технологическим аппаратом при случайной поломке стекла. Из-за низкой механической прочности уровнемерные стекла обычно выполняют длиной не более 0,5 м. Поэтому для измерения уровня в резервуарах (рис. 12.,6) устанавливается несколько уровнемерных стекол с тем расчетом, чтобы они перекрывали друг друга. Абсолютная погрешность измерения уровня уровнемерными стеклами ± (1—2) мм. При измерении возможны дополнительные погрешности, связанные с влиянием температуры окружающей среды. Уровнемерные стекла применяются до давлений 2,94 МПа и до температуры 300°С.
Рис. 12.1. Схема установки указательных стекол на технологических аппаратах
Технологии и методы измерения уровня
В промышленном производстве в настоящее время существует разнообразный ряд технических средств, решающих задачу измерения и контроля уровня. Средства измерения уровня реализуют разнообразные методы, основанные на различных физических принципах. Выбор метода измерений уровня зависит от конкретных условий рабочей среды и характеристик измеряемой среды.
Контактные методы измерения уровня
Поплавковые уровнемеры.
При поплавковом методе индикатором уровня служит поплавок. Для передачи информации от чувствительного элемента используются различные виды связи. Как правило, поплавок снабжен магнитом и заключен в измерительную трубу либо скользит по направляющему стержню. Магнит может влечь за собой ползунок реостата. Изменение сопротивления преобразуется в электрический выходной сигнал, что дает помимо визуального контроля возможность дистанционной передачи показаний и включения в систему автоматизации. Ряд поплавковых уровнемеров используют магнитострикционный эффект. При этом направляющий поплавок стержень содержит волновод, заключенный в катушку, по которой подаются импульсы тока. Под действием магнитных полей тока и двигающегося магнита в волноводе возникают импульсы продольной деформации, распространяющиеся по волноводу и принимаемые пьезоэлементом вверху стержня. Прибор анализирует время распространения импульсов и преобразует его в выходные сигналы.
Герконовые уровнемеры, содержат в теле направляющего стержня цепочку герконов, замыкаемых движущимся магнитом. Дискретность измерения уровня в этом случае – не менее 5 мм.
Поплавковый метод может с успехом применяться в случае пенящихся жидкостей. Типичным применением поплавковых уровнемеров является измерение уровня топлива, масел, легких нефтепродуктов в относительно небольших емкостях и цистернах в процессе коммерческого учета. Температура рабочей среды: — 40…120 °С, избыточное давление: до 2 МПа, для преобразователей с гибким чувствительным элементом — до 0,16 МПа. Плотность среды: 0,5…1,5 г/см3. Диапазон измерений – до 25 м. Важной характерной особенностью поплавковых уровнемеров, является высокая точность измерений (± 1…5 мм). Метод явно неприменим только в средах, образующих налипание, отложение осадка на поплавок, а также коррозию поплавка и конструкции чувствительного элемента.
Емкостные уровнемеры.
Емкостной метод – более простой и дешевый. Он обеспечивает хорошую точность порядка 1,5 %, имеет те же ограничения, что и поплавковый — среда не должна налипать и образовывать отложения на чувствительном элементе. Вместе с тем, в отличие от поплавкового, он применим как для жидких, так и для сыпучих сред с размером гранул до 5 мм. Характерным принципиальным ограничением для емкостного метода является неоднородность среды — измеряемая среда должна быть однородной, по крайней мере, в зоне расположения чувствительного элемента уровнемера.
Чувствительный элемент емкостного уровнемера представляет собой конденсатор, обкладки которого погружены в среду. Он может быть выполнен в виде двух концентрических труб, пространство между которыми заполняется средой, либо в виде стержня, при этом роль второй обкладки играет металлическая стенка емкости. В случае измерения уровня проводящей жидкости чувствительный элемент емкостного уровнемера покрывается изолирующим материалом, обычно фторопластом. Изменение уровня жидкости приводит к изменению емкости чувствительного элемента, преобразуемой в выходной электрический сигнал.
Условия применения емкостных датчиков по характеристикам рабочей среды: температура -40…+200 °С, давление – до 2,5 МПа, диапазон измерения – до 3м (30 м – для тросовых емкостных уровнемеров).
Гидростатический метод измерения уровня.
Гидростатические уровнемеры измеряют давление столба жидкости и преобразуют его в значение уровня, поскольку гидростатическое давление зависит от величины уровня и плотности жидкости и не зависит от формы и объема резервуара. Они представляют собой дифференциальные датчики давления. На один из входов, подсоединяемый к емкости подается давление среды. Другой вход датчика соединяется с атмосферой — в случае открытой емкости без избыточного давления или соединяется с областью избыточного давления в случае закрытой емкости под давлением. Расположение чувствительного элемента (мембраны) датчика соответствует минимальному измеряемому уровню среды в резервуаре.
Гидростатические уровнемеры применяются для однородных жидкостей в емкостях без существенного движения рабочей среды. Они позволяют производить измерения в диапазоне до 250 кПа, что соответствует (для воды) 25 метрам, с точностью до 0,1% при избыточном давлении до 10 МПа и температуре рабочей среды: – 40…+120 °С. Гидростатические уровнемеры могут использоваться для вязких жидкостей и паст. Важным достоинством гидростатических уровнемеров является высокая точность при относительной дешевизне и простоте конструкции.
Буйковые уровнемеры.
Метод определения уровня по выталкивающей силе действующей на погруженный в рабочую жидкость буек используют буйковые уровнемеры . На тонущий буек действует в соответствии с законом Архимеда выталкивающая сила, пропорциональная степени погружения и, соответственно, уровню жидкости. Действие этой силы воспринимает тензопреобразователь, либо индуктивный преобразователь, либо заслонка, перекрывающая сопло.
Буйковые уровнемеры предназначены для измерения уровня в диапазоне – до 10 м при температурах – 50…+120 °С (в диапазоне +60..120 °С при наличии теплоотводящего патрубка, при температурах 120…400 °С приборы работают как индикаторы уровня) и давлении до 20 МПа, обеспечивая точность 0,25…1,5%. Плотность контролируемой жидкости 0,4…2 г/см3.
Буйковые уровнемеры часто применяются для измерения уровня раздела фаз двух жидкостей. Возможно, также, их использование для определения плотности рабочей среды при неизменном уровне.
Бесконтактные методы измерения уровня
Ультразвуковые уровнемеры.
Ультразвуковые уровнемеры обеспечивают бесконтактное измерение уровня. Точность показателей не зависит от свойств измеряемого продукта (например, от диэлектрической постоянной, проводимости, плотности или влажности). Ульразвуковые уровнемеры в некоторой степени нечувствительны к налипанию продукта за счет эффекта самоочистки, вызванного вибрацией диафрагмы сенсора.
По принципу действия акустические уровнемеры можно подразделить на локационные, поглощения и резонансные. В локационных ультразвуковых уровнемерах используется эффект отражения ультразвуковых колебаний от границы раздела жидкость — газ, в связи с чем они получили название ультразвуковых. Положение уровня определяется по времени прохождения ультразвуковых колебаний от источника до приемника после отражения их от поверхности раздела. В уровнемерах поглощения положение уровня определяется по ослаблению интенсивности ультразвука при прохождении через слои жидкости и газа. В резонансных уровнемерах измерение уровня производится посредством измерения частоты собственных колебаний столба газа над уровнем жидкости, которая зависит от высоты уровня.
Ультразвуковой метод характерен очень малым подводом теплоты в контролируемую среду, поэтому может быть использован в криогенной технике. Однако метод применим только на жидкостях со спокойной поверхностью, т.е. исключаются кипящие жидкости и криостаты с загруженным внутренним объемом.
Ультразвуковые уровнемеры предназначенны для измерения уровня жидкостей (в том числе агрессивных), а также сыпучих и кусковых материалов при температуре от -50 до 170 °С при давлении до 4 МПа. Пределы измерения уровня от 0,4 до 30 м, основная погрешность равна ±0,5% и более.
Радарные (СВЧ) уровнемеры.
Микроволновые радарные уровнемеры – наиболее сложные и высокотехнологичные средства измерения уровня. Для зондирования рабочей зоны и определения расстояния до объекта контроля здесь используется электромагнитное излучение СВЧ диапазона. В настоящее время широко используются два типа микроволновых уровнемеров: импульсные и FMCW (frequency modulated continuous wave).
Импульсные микроволновые уровнемеры излучают сигнал в импульсном режиме, при этом прием отраженного сигнала происходит в промежутках между импульсами исходного излучения. Прибор вычисляет время прохождения прямого и обратного сигналов и определяет значение расстояния до контролируемой поверхности.
В уровнемерах FMCW происходит постоянное непрерывное излучение линейно частотно модулированного сигнала и, одновременно, прием отраженного сигнала с помощью одной и той же антенны. В результате на выходе получается смесь сигналов, которая анализируется с применением специального математического и программного обеспечения для выделения и максимально точного определения частоты полезного эхо-сигнала. Для каждого момента времени разность частот прямого и обратного сигналов прямопропорциональна расстоянию до контролируемого объекта.
Обычно, рабочая частота радарных уровнемеров независимо от типа варьирует от 5,8 до 26 ГГц. Чем более высокая частота, тем более узкий «луч» и тем выше энергия излучения, а, следовательно, сильнее отражение. Поэтому высокочастотные уровнемеры позволяют производить измерения уровня сред с низкой диэлектрической проницаемостью и, следовательно, слабой отражательной способностью. Они, также, удобны в емкостях, где присутствует различное оборудование, сокращающее свободную зону для работы радара. Вместе с тем, высокочастотные уровнемеры более чувствительны к таким явлениям как запыленность, испарения, волнение поверхности рабочей среды, налипание частиц среды на поверхность антенны вследствие более интенсивного рассеивания сигнала. В подобных условиях лучше работают уровнемеры с частотой более 90 ГГц.
Другой важной характеристикой влияющей на формирование сигнала является размер и тип антенны. Различают следующие типы антенн: рупорная (коническая), стержневая, трубчатая, параболическая, планарная. Чем больше размер антенны, тем более сильный и узконаправленный сигнал она излучает и, в тоже время, тем лучше прием отраженного сигнала.
Наиболее универсальный тип антенны – рупорная. Она применяется, как правило, в больших емкостях, позволяет работать с широким спектром сред по диэлектрической проницаемости, применима в сложных условиях и обеспечивает диапазон измерения до 35…40 м. (в условиях спокойной поверхности).
Стержневая антенна применяется в небольших емкостях с химически агрессивными средами или гигиеническими продуктами, а также в случае, когда доступ в емкость ограничен малыми размерами патрубка. Диапазон измерения – до 20 м. Поверхность стержневой антенны покрыта слоем защитной изоляции.
Трубчатая антенна представляет собой надстроенный удлиненный волновод. Она позволяет формировать наиболее сильный сигнал за счет снижения рассеивания и используется в особо сложных случаях при наличии сильного волнения поверхности среды или большого слоя густой пены либо для случая сред с низкой диэлектрической проницаемостью. Трубчатая антенна применима для небольшого диапазона измерения уровня.
Планарный и параболический типы антенн обеспечивают особо высокую точность до ±1 мм и применяются в системах коммерческого учета.
Радарные уровнемеры — наиболее универсальные средства измерения уровня. Не имея непосредственного контакта с контролируемой средой, они могут применяться для агрессивных, вязких, неоднородных жидких и сыпучих материалов. От ультразвуковых бесконтактных уровнемеров их выгодно отличает гораздо меньшая чувствительность к температуре и давлению в рабочей емкости, к их изменениям, а также большая устойчивость к таким явлениям как запыленность, испарения с контролируемой поверхности, пенообразование. Радарные уровнемеры обеспечивают высокую точность измерения уровня, что позволяет использовать их в системах коммерческого учета. Вместе с тем существенным лимитирующим фактором применения радарных уровнемеров остается высокая стоимость данных приборов.
Для любого метода измерения уровня характерен набор технических реализаций, расширяющийся с развитием технологий и измерительной техники.
Измерения уровня — виды и способы измерения
Измерения уровня
При помощи измерения уровня определяют:
- уровень жидкости в емкостях, баках, резервуарах;
- объем сыпучих материалов в бункерах.
Для измерения уровня жидкости используют уровнемеры. Важно, чтоб приборы, предназначенные для контроля измерения уровня не только констатировали текущее положение уровня, но и сигнализировали о достижении минимума и максимума.
Контроль за уровнем жидкости и сыпучих материалов актуален в:
- энергетике;
- химической и легкой промышленности;
- угле- и горнодобывающих отраслях;
- строительной отрасли.
Виды уровнемеров
Уровень жидкостей измеряют при помощи основных уровнемеров:
- поплавковых;
- буйковых;
- гидростатических;
- ультразвуковых;
- акутических.
Основные типы уровнемеров для измерения уровня сыпучих твердых материалов:
- радиоизотопные;
- емкостные.
Действие уровнемера поплавкового основано на способности поплавка постоянно находиться на поверхности жидкости. Контроль уровня происходит при помощи указателя, соединенного с поплавком тросом или рычагами.
В буйковых уровнемерах уровень жидкости определяют по количеству жидкости, вытесненной закрепленным в емкости буйком. Информация об уровне жидкости передается на промежуточный преобразователь, а затем последовательно трансформируется в:
- пневматические;
- электрические сигналы. Простой заменой:
- буйка;
- системы рычагов
можно расширить или изменить границы измерений.
Рис. 1. Буйковый уровнемер
1 — рычаг;
2 — промежуточный преобразователь силы в унифицированный сигнал;
3 — буек.
В гидростатических уровнемерах использована зависимость глубины от гидростатического давления. Эти методы измерения уровня использованы в дифманометрах.
Рис. 2. Измерения уровня дифманометрами
а — в открытой емкости;
б—в емкости под давлением;
в — для суспензий и шламов;
1— дифманометр;
2— уравнительный сосуд.
В ультразвуковом уровнемере излучатель, расположенный внутри жидкости, посылает импульс. При достижении поверхности жидкости волна отражается и возвращается к излучателю.
Рис. 3. Ультразвуковой и акустический уровнемеры
1 — излучатель;
2 — электронный блок.
Как измерять уровень дифманометром
Назначение дифманометров — измерение:
В зависимости от способа уравновешивания измеряемого давления или разряжения дифманометры могут быть :
- жидкостными — столбом жидкости;
- механическими — силой упругости мембран, пружин, сильфонов.
При измерении уровня U-образными дифманометрами необходимо суммировать показания столба жидкости в обеих трубках.
Рис. 4. U-образный дифманометр
Уровень +Омюв
Вопрос 30. Классификация приборов измерения уровня. Устройство и настройка поплавкового выключателя уровня типа Омюв
Классификация приборов измерения уровня
Широкий круг задач, связанных с измерением и регулированием уровня, обусловил появление большого числа различных приборов и устройств, основанных на разных принципах действия с различной степенью сложности в изготовлении и наладке таких устройств и приборов. В соответствии с этим приборы для измерения и регулирования уровня разделяются.
Поплавковый уровнемер – уровнемер, принцип действия которого основан на следящем действии поплавка, плавающего на поверхности жидкости и перемещающегося вместе с её уровнем.
Поплавковые уровнемеры непригодны для вязких жидкостей (дизельного топлива, мазута, смол) из-за залипания поплавка, обволакивания его вязкой средой.
Наиболее часто поплавковые уровнемеры используют для измерения уровней в больших открытых резервуарах, а также в закрытых резервуарах с низким давлением.
Буйковый уровнемер – уровнемер, принцип действия которого основан на измерении перемещения буйка. Буёк в отличие от поплавка не плавает на поверхности жидкости, а погружен в жидкость и перемещается в зависимости от её уровня. Измерительным параметром является выталкивающая сила тонущего буйка, величина которой пропорциональна глубине его погружения в жидкость, при этом жидкость может находиться под атмосферным, избыточным или вакуумметрическим давлением.
Буйковые уровнемеры наиболее часто применяются для измерения уровня однородных, в том числе агрессивных жидкостей, находящихся при высоких рабочих давлениях (до 32 МПа), широком диапазоне температур (от –200 до +600°С) и не обладающих свойствами адгезии (прилипания) к буйкам. Главной особенностью буйковых уровнемеров является возможность измерения уровня границы раздела двух жидкостей.
Недостатком буйковых уровнемеров являются зависимость их точности от плотности и температуры измеряемой среды, ограниченность использования для больших (свыше 16 м) диапазонов измерения уровней жидкостей и жидкостей, обладающих адгезией к буйку.
Пьезометрический уровнемер – уровнемер, принцип действия которого основан на преобразовании гидростатического давления жидкости в давление воздуха, подаваемого от постороннего источника и барботирующего через слой жидкости.
У этого уровнемера чувствительный элемент не находится в непосредственном контакте с измеряемой средой, а воспринимает гидростатическое давление через воздух, что является его достоинством.
Для пьезометрических уровнемеров также характерна погрешность измерения из-за плотности измеряемой среды.
Гидростатический уровнемер – уровнемер, принцип действия которого основан на измерении манометром или напорометром гидростатического давления жидкости, зависящего от высоты её уровня.
Уровнемеры этого вида обычно используют для измерения неагрессивных незагрязнённых жидкостей, находящихся под атмосферным давлением.
Недостатком гидростатических уровнемеров является погрешность измерения при изменении плотности жидкости.
Электронные приборы измерения уровня – приборы, в основу измерения которых положен принцип изменения ёмкости, индуктивности или сопротивления от уровня жидкости.
Емкостной уровнемер – уровнемер, принцип действия которого основан на различии диэлектрической проницаемости жидкости и воздуха.
В связи с этим по мере погружения электродов датчика уровнемера в жидкость изменяется ёмкость между ними пропорционально уровню жидкости в резервуаре.
Индуктивный уровнемер – уровнемер, принцип действия которого основан на том, что при перемещении поплавка, обусловленное изменением уровня жидкости. Передаётся на индуктивный датчик.
Благодаря отсутствию сальника и связанного с ним трения достигается более точная индикация уровня, чем это имеет место при других электромеханических методах. Для точных измерений необходима установка механических направляющих движений поплавка и ферромагнитного сердечника индуктивного датчика.
Уровнемер давления – уровнемер, использующий силу давления столба жидкости, которая зависит от уровня жидкости в ёмкости.
Радиоизотопный прибор использует изменение интенсивности потока g–излучения при прохождении его через измеряемую жидкость. Радиоизотопный источник, например, кобальтовый, помещается в верхней части резервуара, а детектор, состоящий из нескольких сцинтилляторов, светоколлекторов и общего фокусирующего устройства – в нижней части резервуара. Сигналы с детектора поступают на усилитель и отсчетное устройство. С изменением уровня жидкости изменяется число импульсов в секунду, воспринимаемых детектором.
Уровнемеры, работающие по этому методу, имеют незначительные погрешности (не более 2-3%), однако требуют защиты от излучения. Они предназначаются для непрерывного бесконтактного дистанционного измерения уровней различных жидкостей, в том числе расплавленных металлов и пластмасс.
Ультразвуковой уровнемер – прибор, в котором для измерения используется ультразвук. В него входят излучатель и приёмник. Излучатель посылает ультразвуковые импульсы, представляющие собой механические колебания в диапазоне частот от 20кГц до нескольких мегагерц. Метод основан на измерении времени прохождения сигнала, использующий принцип эхолота. Излученный сигнал отражается пограничным слоем жидкость-воздух.
Преимущество метода – удобство измерения уровня заполнения даже в труднодоступных резервуарах. Недостатком являются — большие расходы на пьезоэлектрические вибраторы и частотные генераторы, входящие в его состав.
Радиочастотный уровнемер – прибор, построенный по принципу радара, т.е. используется отражение электромагнитной волны от поверхности жидкости или раздела двух сред (с разной диэлектрической проницаемости).
Устройство и настройка поплавкового выключателя уровня типа Омюв
Примеры уровнемеров “Омюв” (слева — направо: Омюв 05; Омюв 09Li; Омюв 22; Омюв 08; Омюв 24;).
Устройство уровнемера “Омюв”
В состав уровнемера входят:
Принцип работы и настройка уровнемера “Омюв”
Внутри штанги заранее установлены на необходимом уровне герконы. При изменении уровня поплавок движется вдоль штанги, и когда достигает герконов, то магнитное поле кольцевого магнита воздействует на геркон, и он замыкается. При этом срабатывает сигнализация о достижении заданного уровня.
Настройка уровнемера “Омюв” осуществляется перемещением герконов внутри штанги, тем самым задаётся требуемая величина уровня, при котором произойдет срабатывание сигнализации о достижении уровня.
Схема монтажа уровнемеров “Омюв” различных видов
Уровень (инструмент) — Википедия
У этого термина существуют и другие значения, см. Уровень. Уровень с двумя ампулами: одна размещена параллельно длине уровня, другая — перпендикулярно Уровни разной длины с боковой линейкой.У́ровень, или ватерпа́с (англ. waterpass, нидерл. waterpas от water «вода» + pas «отрегулировать») — измерительный инструмент прямоугольной формы из пластика, дерева или металла с установленными в нём прозрачными колбами (глазками), заполненными жидкостью. Уровень был разработан для оценки соответствия поверхностей вертикальной или горизонтальной плоскости, а также для измерения градуса отклонения поверхности от горизонтальной плоскости.
Спиртовой уровень был изобретен французским ученым, путешественником и картографом Мельхиседеком Тевено. Его изобретение было впервые использовано в его экспедиции на Мадагаскар в 1666 году.
Основным рабочим элементом этого инструмента являются измерительные колбы (глазок уровня) чаще всего бочкообразной формы с нанесенными на их корпус рисками. Колбы обычно заполнены окрашенной спиртосодержащей жидкостью с небольшим пузырьком воздуха. Заполнение спиртом, например этанолом, объясняется тем, что такая жидкость не замерзает при отрицательной температуре, а также обладает низкой вязкостью для быстрого перемещения пузырька воздуха. Измерение и настройка поверхностей относительно горизонтальной и вертикально плоскостей происходит за счет движения пузырька воздуха вдоль колбы, при этом необходимо добиться его положения точно посередине между двумя рисками на колбе. В современных инструментах для измерения более точного угла отклонения на глазок наносят более двух рисок.
Самым распространенным типом уровня является уровень с двумя глазками: вертикальным (90 градусов) и горизонтальным (180 градусов). При более сложных работах используется инструмент с тремя глазками. Третья из колб фиксированно измеряет 45 градусов от горизонтальной плоскости или является поворотной для измерения любого угла поверхности. Реже используют уровни с большим количеством глазков, которые дублируют горизонтальные или вертикальные колбы для более точного измерения. На сегодняшний день существует много видов уровней, разработанных под различные нужды. В первую очередь инструмент используется плотниками, каменщиками, монтажниками при различных монтажно-крепежных работах, а также с целью проверки результатов уже произведенных работ.
Корпус уровня может включать в себя следующие модификации:
— Ребра жесткости — для большей прочности корпуса инструмента
— Разметка на одной из сторон уровня — для использования инструмента в качестве линейки
— Фрезерованная поверхность одной из сторон — для предотвращения соскальзывания уровня с рабочей поверхности, а также для облегчения прикладываемых усилий при удержании уровня одной рукой
— Ударная площадка — для возможности нанесения ударов молотком с целью регулировки поверхности, с которой работает мастер
— Паз для труб — для предотвращения соскальзывания уровня с округлых поверхностей
Самые распространенные типы уровней[править | править код]
Уровень профильный
Изготавливается из алюминиевого профиля прямоугольной формы. Подходит для всех типов работ. Основное преимущество: прочность корпуса.
Уровень «рельс»
Облегченный корпус в форме рельса. Подходит для всех типов работ. Основное преимущество: малый вес.
Уровень торпедо
Маленький пластиковый корпус, чаще всего 225 мм. Одна из сторон магнитная для возможности установки на металлическую поверхность. Подходит для бытовых работ. Основное преимущество: маленькие размеры
Ударный уровень
Уровень с дополнительной площадкой для возможности нанесения ударов молотком. Подходит для работ по укладке плитки. Основное преимущество: прочный корпус, возможность нанесения ударов.
- Лазерный уровень (Также см. Нивелир при условии выполнения точности по ГОСТ 10528-90)
- Водяной уровень (Гидроуровень)
Часто ватерпасом в отличие от описанного выше жидкостного уровня называют прибор, представляющий собой две строго перпендикулярные деревянные планки, соединенные в форме перевернутой буквы Т, на «ножке» которой закреплен отвес. Ватерпас выполняет те же функции, что и горизонтальный уровень, но более прост в изготовлении.
Для проверки уровня (то есть оценки точности проводимых им измерений) необходимо установить его на ровную горизонтальную поверхность и замерить положение пузырька воздуха относительно двух рисок в центре колбы. Затем уровень нужно перевернуть в горизонтальной плоскости на 180 градусов и произвести повторный замер положения пузырька. Если уровень исправен, то пузырек воздуха будет точно в том же положении, что и при первом измерении. Для регулировки инструмента (если это предусмотрено, колба будет закреплена регулировочными винтами на теле уровня) необходимо попеременно вращать уровень на 180 градусов в горизонтальной плоскости и регулировать положение глазка до тех пор, пока его показания не будут идентичными при вращении инструмента. Для подобной регулировки не требуется идеально горизонтальная или вертикальная поверхность.