Как подобрать рабочий конденсатор для трехфазного двигателя: Как подобрать конденсаторы для электродвигателя.

Содержание

Как подобрать конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Содержание

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.

Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Как выбрать конденсатор для электродвигателя

Электродвигатели используются в каждом доме, так как они являются движущей силой любого бытового прибора. Кроме того, они являются главным составляющим и электроинструментов. Именно по этой причине домашним мастерам хочется узнать побольше о работе прибора и его характеристиках.


В большинстве случаев электродвигатели имеют систему трехфазного подключения к сети. И для домашней сети они получаются слишком мощными и не отдают полностью свою рабочую силу.

Для таких случаев используется конденсатор для электродвигателя, фото такого прибора в большом количестве есть в сети.

Именно вопрос подключения конденсатора наиболее популярен при интересу к электродвигателю и именно о нем мы поговорим подробно.

Краткое содержимое статьи:

Разновидности конденсаторов пуска

Маломощные электродвигатели, работающие от 200-400 В не нуждаются в установке дополнительного конденсатора пуска.

Дело в том, что в каждом устройстве конденсатор уже заранее установлен.

Для слабых по мощности двигателей его достаточно, а вот для того, чтобы работали устройства с повышенной мощностью потребуется дополнительный внешний пусковой конденсатор.

Конденсаторы для асинхронных электродвигателей необходимо подбирать опытным путем, проверяя каждый.

Такой прибор устанавливается параллельно к уже имеющемуся. На некоторое время при разгоне двигателя его оставляют включенным.

Включение и дальнейшая работа конденсатора возможна только при зажатой кнопке пуска. После разгона обязательно потребуется выключить конденсатор, так как при его постоянной работе двигатель будет крутиться на полную мощность.

А при обыкновенной домашней сети с одной фазой это приведет к перегреву и выходу из строя оборудования.

Видов конденсаторов для электродвигателя в настоящее время существует три:

Полярные. Данный вид способен работать только при постоянной подаче тока. Переменное питание быстро выведет из строя электродвигатель.

Неполярные. Они более популярны за счет разнообразных условий работы. То есть такие конденсаторы можно устанавливать и при постоянном токе и при переменном.

С электролитом. Данный вариант конденсатора электродвигателя имеет обычно небольшую емкость и наиболее подходящим вариантом они послужат в использовании к низкочастотным электродвигателям.

Как подобрать конденсатор для двигателя

При выборе конденсатора на трехфазный двигатель важно помнить о том, что мощность в нем должна иметь десятки и сотни микрофарад.

Но электролитические конденсаторы с такой целью выбирать не рекомендуется.

Для них понадобится однополярное подключение, а это потребует установки дополнительного оборудования.

Кроме того, данный вариант может привести к быстрому выходу двигателя из строя в связи с перегревом.

Так же необходимо уметь отличать рабочий конденсатор от пускового. Первый вариант работает на протяжении всего цикла действий двигателя, а второй только помогает ему запуститься.

Рабочий не стоит выбирать, так как его мощность вдвое меньше чем у пускового.

При правильно сделанном выборе конденсатора его рабочие показатели повысятся.

Кроме того, конденсатор, подходящий к двигателю позволит значительно продлить жизнь мотора.

Как подключать конденсаторы

Подключение любого вида конденсаторов должно производиться по точной схеме. Рабочий конденсатор подключается снизу, а пусковой выше параллельно ем.

  • Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!

  • Солнечная батарея своими руками — пошаговая инструкция как изготовить и провести монтаж солнечной батареи в домашних условиях (фото и видео-инструкция)

  • Как подобрать солнечную электростанцию: готовые решения, принцип работы, как выбрать и установить своими руками (фото + видео-инструкция)

Кроме того, важно не забыть подключить кнопку пуска, при этом следите за последовательностью проводов.

При помощи такой схемы можно подключать и конденсаторы на проверку. При суммировании мощностей рабочего и пускового конденсаторов будет получаться, что мощность меняется.

Здесь уже требуется наблюдать за состоянием работы непосредственно самого электродвигателя. Если он работает хорошо, то выбрана нужная мощность.

Также можно подключать последовательно несколько конденсаторов пускового типа и смотреть за двигателем.

Как только определена точка нормальной работы, суммируете мощность всех подключенных тестеров и покупать уже следует с общей мощностью. Только так будет понятно, как выбрать конденсатор для электродвигателя.

Фото советы как выбрать конденсатор для электродвигателя

Вам понравилась статья? Поделитесь 😉

 

Трехфазные электрические двигатели. Коэффициент мощности в зависимости от индуктивной нагрузки

Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или фактической) мощности к полной мощности , где

  • Активная (Реальная или истинная) Мощность измеряется в ваттах ( Вт ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
  • Полная мощность измеряется в вольт-амперах (ВА) и представляет собой произведение напряжения в системе переменного тока на весь протекающий в ней ток. Это векторная сумма активной и реактивной мощности
  • Реактивная мощность  измеряется в реактивных вольт-амперах ( ВАР ). Реактивная мощность — это мощность, накапливаемая и отводимая асинхронными двигателями, трансформаторами и соленоидами.
  • Активная, реактивная и полная мощность

Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, требуемая индуктивными нагрузками, увеличивает количество полной мощности и требуемую подачу в сеть от поставщика электроэнергии к системе распределения.

Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .

Коэффициент мощности

Коэффициент мощности обычно определяют — PF — как косинус фазового угла между напряжением и током — или « cosφ «:

PF = cos φ

7

7 где

PF = коэффициент мощности

φ = фазовый угол между напряжением и током

 Коэффициент мощности, определенный IEEE и IEC, представляет собой отношение между приложенной активной (действительной) мощностью — и полной мощностью , и в общем случае может быть выражен как:

PF = P / S (1)

, где

PF = Фактор мощности

P = Активный (True Or) Power (Watts)

S = Appet Power). вольт ампер)

Низкий коэффициент мощности является результатом индуктивных нагрузок, таких как трансформаторы и электродвигатели. В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.

Коэффициент мощности является важным показателем в электрических системах переменного тока, поскольку

  • общий коэффициент мощности менее 1 указывает на то, что поставщику электроэнергии необходимо обеспечить большую генерирующую мощность, чем фактически требуется
  • искажение формы волны тока, которое способствует снижению коэффициента мощности, вызвано искажением формы волны напряжения и перегревом нейтральных кабелей трехфазных систем. путем введения ограничений на амплитуду гармоник тока.

    Пример — коэффициент мощности

    Промышленное предприятие потребляет 200 А при 400 В , трансформатор питания и резервный ИБП имеют номинал 400 В x 200 А = 80 кВА .

    Если коэффициент мощности — PF — из нагрузок — 0,7 — только

    80 KVA × 0,7

    = 56 кВт

    из реальной энергии потребляется по системе. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.

    • Любой коэффициент мощности менее 1 означает, что проводка цепи должна пропускать больший ток, чем это было бы необходимо при нулевом реактивном сопротивлении в цепи, чтобы доставить такое же количество (истинной) мощности на резистивную нагрузку.
    Conductor Cross-Section vs. Power Factor

    Required cross-section area of ​​conductor with lower power factor:

    Power Factor 1 0.9 0.8 0.7 0.6 0,5 0. 4 0.3
    Cross-Section 1 1.2 1.6 2.04 2.8 4.0 6.3 11.1

    A low power factor is expensive и неэффективны, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит пропускную способность электрической системы, увеличивая ток и вызывая падение напряжения.

    «Опережающий» или «отстающий» коэффициент мощности

    Коэффициент мощности обычно указывается как «опережающий» или «отстающий», чтобы показать знак фазового угла.

    • При чисто резистивной нагрузке ток и напряжение меняют полярность ступенчато, и коэффициент мощности будет равен 1 . Электрическая энергия течет в одном направлении по сети в каждом цикле.
    • Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, при этом форма волны тока отстает от напряжения.
    • Емкостные нагрузки — батареи конденсаторов или подземные кабели — генерируют реактивную мощность, причем фаза тока опережает напряжение.

    Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. Энергия возвращается обратно в источник питания в течение остальных циклов.

    В системах с главным образом индуктивной нагрузкой – как правило, на промышленных предприятиях с большим количеством электродвигателей – запаздывающее напряжение компенсируется батареями конденсаторов.

    Коэффициент мощности для трехфазного двигателя

    Полная мощность, требуемая индуктивным устройством, таким как двигатель или аналогичный, состоит из нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)

Коэффициент мощности трехфазного электродвигателя можно выразить как:

PF = P / [(3) 1/2 U I] (2)

, где

PF = Фактор мощности

PF = POWE

U = напряжение (V)

I = ток (A, Amps)

— или альтернатива:

P = (3) 1,102 248 248 248 248 248 2 488 248 248 248 248 248 2 488 248 248 248 2 488 248 248 248 2 488 248 248 2 488 248 2 488 248 248 2 488 248 2 488 248 2 488 248 248 2 488 9. .

   =   (3) 1/2 U I cos φ                  (2b)

U, l и cos φ обычно указываются на паспортной табличке двигателя.

Типичные коэффициенты мощности мощности

Power
(HP)
Скорость
(RPM)
Фактор мощности (COS φ ). 1/2 загрузки 3/4 загрузки полная загрузка
0 — 5 1800 0.15 — 0.20 0.5 — 0.6 0.72 0.82 0.84
5 — 20 1800 0.15 — 0.20 0.5 — 0.6 0.74 0.84 0.86
20 — 100 1800 0.15 — 0.20 0.5 — 0.6 0.79 0.86 0.89
100 — 300 1800 0. 15 — 0.20 0.5 — 0.6 0.81 0.88 0.91
  • 1 hp = 745.7 W

Power Factor by Industry

Typical un -improved power factors:

7 5164
Industry Power Factor
Brewery 75 — 80
Cement 75 — 80
Chemical 65 — 75
Electro-chemical 65 — 75
Foundry 75 — 80
Forging 70 — 80
Hospital 75 — 80
Производство, машины 60 — 65
Производство, покраска 65 — 70
Металлообработка4 901
Mine, coal 65 — 80
Office 80 — 90
Oil pumping 40 — 60
Plastic production 75 — 80
Stamping 60 — 70
Металлургический завод 65 — 80
Текстиль 35 — 60
9040 Факторы Силы0043
  • снижение счетов за электроэнергию — предотвращение штрафа за низкий коэффициент мощности со стороны энергоснабжающей компании
  • увеличение мощности системы — дополнительные нагрузки могут быть добавлены без перегрузки системы
  • улучшенные рабочие характеристики системы за счет снижения потерь в линии — благодаря меньшему току
  • улучшение рабочие характеристики системы за счет усиления напряжения – предотвращение чрезмерного падения напряжения

Коррекция коэффициента мощности с помощью конденсатора

Capacitor correction factor
Power factor before improvement (cosΦ) Power factor after improvement (cosΦ) 
1. 0 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90
0.50 1.73 1.59 1.53 1.48 1.44 1.40 1.37 1.34 1.30 1.28 1.25
0.55 1.52 1.38 1.32 1.28 1.23 1.19 1.16 1.12 1.09 1.06 1.04
0.60 1.33 1.19 1.13 1.08 1.04 1.01 0.97 0.94 0.91 0.88 0.85
0.65 1.17 1.03 0.97 0.92 0.88 0. 84 0.81 0.77 0.74 0.71 0.69
0.70 1.02 0.88 0.81 0.77 0.73 0.69 0.66 0.62 0.59 0.56 0.54
0.75 0.88 0.74 0.67 0.63 0.58 0.55 0.52 0.49 0.45 0.43 0.40
0.80 0.75 0.61 0.54 0.50 0.46 0.42 0.39 0.35 0.32 0.29 0.27
0.85 0.62 0.48 0.42 0.37 0.33 0.29 0.26 0.22 0.19 0.16 0. 14
0.90 0.48 0.34 0.28 0.23 0.19 0.16 0.12 0.09 0.06 0.02
0.91 0.45 0.31 0.25 0.21 0.16 0.13 0.09 0.06 0.02
0.92 0.43 0.28 0.22 0.18 0.13 0.10 0.06 0.03
0.93 0.40 0.25 0.19 0.15 0.10 0.07 0.03
0.94 0.36 0.22 0.16 0.11 0.07 0.04
0. 95 0.33 0.18 0.12 0.08 0.04
0.96 0.29 0.15 0.09 0.04
0.97 0.25 0.11 0.05
0,98 0,20 0,06
0.99 0.14
Example — Improving power factor with capacitor

An electrical motor with power 150 kW has power factor before improvement cosΦ = 0,75 .

Для требуемого коэффициента мощности после улучшения cosΦ = 0,96 — поправочный коэффициент конденсатора 0,58 .

Требуемая мощность квар может быть рассчитана как

C = (150 кВт) 0,58

  = 87 квар коррекция асинхронных двигателей примерно до 95% коэффициента мощности.

Мощность асинхронного двигателя
(л.с.)
Номинальная скорость двигателя (об/мин)
3600 1800 1200
Оценка конденсаторов
(KVAR)
Снижение тока линии
(%)
RATING
18 (%)
RATING 8 (%) RATIN Capacitor Rating
(KVAR)
Reduction of Line Current
(%)
3 1.5 14 1.5 23 2.5 28
5 2 14 2. 5 22 3 26
7.5 2.5 14 3 20 4 21
10 4 14 4 18 5 210164 5 210164 5 210164 5 210164.0164 5 18 6 20
20 6 12 6 17 7.5 19
25 7.5 12 7.5 17 8 19
30 8 11 8 16 10 19
40 12 12 13 15 16 19
50 15 12 18 15 20 19
60 18 12 21 14 22. 5 17
75 20 12 23 14 25 15
100 22.5 11 30 14 30 12
125 25 10 36 12 35 12
150 30 10 42 12 40 12
200 35 10 50 11 50 10
250 40 11 60 10 62.5 10
300 45 11 68 10 75 12
350 50 12 75 8 90 12
400 75 10 80 8 100 12
450 80 8 90 8 120 10
500 100 8 120 9 150 12

Однофазные и трехфазные двигатели: руководство по выбору

Автор: Брэдли | Оставить комментарий

Электродвигатели — это электромеханические устройства, которые преобразуют электрическую энергию в механическую для питания подключенного оборудования. Они могут быть классифицированы по-разному в зависимости от их дизайна и конструкции. По количеству фаз источника питания их можно разделить на однофазные и трехфазные. Хотя между ними есть некоторое сходство, между ними также есть много различий. Каждый из них имеет уникальные рабочие и эксплуатационные характеристики, которые делают его пригодным для определенных типов приложений.

Нажмите, чтобы развернуть

Эксперты по электродвигателям в Гейнсвилле составили следующее руководство по однофазным и трехфазным двигателям, чтобы помочь читателям понять, какой из них лучше всего подходит для них. Он охватывает различия между ними, подчеркивая, как они работают, доступные типы, основные преимущества и общие области применения.

Различия между однофазными и трехфазными двигателями

При любом применении двигателя важно тщательно выбирать тип, который вы используете. Если двигатель слишком мал, это может вызвать электрические напряжения, которые приведут к преждевременному выходу двигателя из строя. Если двигатель слишком мощный, это может привести к повреждению оборудования и ненужной трате энергии. В зависимости от требований и ограничений применения неправильный двигатель также может привести ко многим другим проблемам.

По этим причинам важно знать, какие двигатели подходят для каких применений. Первый шаг — понять, как они работают и какие преимущества они предлагают. Рассмотрим однофазные и трехфазные двигатели.

Что такое однофазный двигатель?

Однофазный электродвигатель использует однофазный источник питания для преобразования электрической энергии в механическую. Он содержит два провода (один горячий провод и один нейтральный провод) и использует одно переменное напряжение. Поскольку он генерирует только переменное поле, для запуска ему нужен конденсатор.

Однофазные двигатели могут обеспечивать мощность до 10 л.с. Однако они, как правило, имеют небольшие размеры и обладают ограниченным крутящим моментом.

Существует множество типов однофазных двигателей. К ним относятся:

  • Двигатели конденсаторные двухвентильные
  • Двигатели с конденсаторным пуском
  • Двигатели с постоянными конденсаторами
  • Двухфазные двигатели
  • Двигатели с фазным ротором
  • Двигатели с экранированными полюсами

Какой тип однофазного двигателя лучше всего подходит, зависит от вашего применения. Например, двигатели с конденсаторным пуском развивают высокий пусковой момент и идеально подходят для приложений с большими нагрузками, требующими частых пусков. С другой стороны, двигатели с расщепленными полюсами лучше всего работают в устройствах, требующих низкого пускового момента.

Основным преимуществом однофазных двигателей является их потребляемая мощность. Эти двигатели требуют меньше энергии для работы, чем трехфазные двигатели.

Однофазные двигатели обычно используются для оборудования, требующего меньшей мощности (10 л.с. или меньше) или небольших агрегатов. Они в основном используются в жилых или непромышленных объектах, таких как дома, офисы и малые предприятия. Примеры общего использования включают кондиционеры, компрессоры, системы открывания/закрывания дверей, небольшие дрели, вентиляторы, насосы и холодильники.

Что такое трехфазный двигатель?

Трехфазный электродвигатель использует трехфазный источник питания для преобразования электрической энергии в механическую. Он содержит четыре провода (три горячих провода и один нейтральный провод) и использует три переменного тока одинаковой частоты. Поскольку он генерирует вращающееся магнитное поле, ему не нужен конденсатор для запуска. Некоторые трехфазные двигатели являются реверсивными, что означает, что они могут служить генераторами, превращая механическую энергию в электрическую.

Трехфазные двигатели мощностью примерно до 400 л.с. и скоростью от 900 до 3600 оборотов в минуту (об/мин).

Доступны следующие типы трехфазных двигателей:

  • Асинхронные двигатели с короткозамкнутым ротором или с короткозамкнутым ротором
  • Двигатели с короткозамкнутым ротором
  • Асинхронные двигатели с контактными кольцами или фазным ротором

Эти типы различаются мощностью двигателя, размером корпуса, стоимостью, весом, сроком службы и другими параметрами.

При выборе типа, подходящего для данного применения, среди прочих факторов следует определить требуемый пусковой крутящий момент.

Основные преимущества трехфазных двигателей по сравнению с другими типами двигателей включают:

  • Они более мощные (примечание: мощность более чем на 150% больше, чем у однофазного двигателя).
  • Они более эффективны при передаче большого объема электроэнергии на большую площадь, что делает их более экономичными для объектов с высоким потреблением электроэнергии.
  • Они служат дольше, чем однофазные двигатели.
  • Они менее шумные при работе.

Благодаря высокой мощности трехфазные двигатели широко используются во многих отраслях промышленности. Они также используются для питания конвейеров, токарных станков, компонентов для обработки под давлением, шлифовальных станков, насосов и т. д.


GIE: Ваш надежный дистрибьютор однофазных и трехфазных промышленных двигателей

Gainesville Industrial Electric (GIE) — крупнейший независимый дистрибьютор двигателей в Джорджии. Мы предлагаем широкий ассортимент однофазных и трехфазных двигателей различных производителей. Проверьте нашу линейную карту, чтобы просмотреть наш выбор.

Свяжитесь с нами сегодня, если вам нужен промышленный электродвигатель

Как однофазные, так и трехфазные двигатели находят применение в самых разных областях. Понимание различий между ними является ключом к тому, чтобы использовать правильный тип для своих операций.

Если вам нужна помощь в выборе между однофазными и трехфазными двигателями, специалисты Gainesville Industrial Electric готовы помочь! Как опытный дистрибьютор двигателей и поставщик услуг по ремонту, мы хорошо подготовлены, чтобы ответить на любые вопросы или проблемы, которые могут возникнуть у вас в отношении электродвигателей.

Мы также можем предоставить решение для различных областей применения. Поскольку управление качеством и соблюдение нормативных требований являются ключевым направлением деятельности нашей компании, мы гарантируем, что поставляемые нами продукты соответствуют или превосходят все соответствующие стандарты безопасности и отраслевые требования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *