Как правильно выбрать стабилизатор напряжения: как выбрать и какой лучше – Стабилизатор напряжения какой мощности выбрать

Содержание

Как выбрать стабилизатор напряжения (2018) | Офисная техника и мебель | Блог

Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели. 

Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя. 

Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению. 

Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор. 

Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.

Защита электроприборов

Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.

Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту. 

Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.

СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.

Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.

Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.

Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.

Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.

Характеристики стабилизаторов

Тип стабилизатора напряжения

Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле. 

При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.

Преимущества релейных стабилизаторов:

– Низкая цена.

– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.

– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.

Недостатки:

– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.

– Шумность. Реле при переключении щелкает довольно громко.

– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.

Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное. 

Преимущества электромеханических стабилизаторов:

– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.

– Плавность регулирования.

– Высокая точность регулирования.

– Низкий уровень шума при регулировании.

Недостатки:

– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.

– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.

– Высокая цена.

Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный. 

Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.

Недостатки инверторных стабилизаторов:

– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.

– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.

– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи - явление маловероятное.

Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов. 

Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом. 

Но свои недостатки есть и у этого вида стабилизаторов:

– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.

– Ступенчатость регулирования.

– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.

Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:

Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% - дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать. 

Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.

Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:

  • 150/0,8=187,5
  • 500/0,7=714,3
  • 500/0,95=526,3

Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.

Пусковая мощность будет равна:

  • 187,5*3=562,5
  • 714,3*7=5000
  • 526,3*1,5=790

Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.

Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей. 

Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.

Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей. 

Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.

Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.

Варианты выбора стабилизаторов

Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.

Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.

С защитой всех домашних электроприборов справится мощный стабилизатор.

Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.

Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.

 

 

 

 

 

 

 

 

 

 

 

 

Как выбрать стабилизатор напряжения. Рекомендации по выбору стабилизатора напряжения

Чтобы приступить к выбору стабилизатора в первую очередь нужно понимать - для чего нужен стабилизатор напряжения?

Этот вопрос возникает достаточно часто, а вместе с ним и другой – что нужно знать перед тем, как выбрать стабилизатор напряжения?

Целью использования стабилизатора является защита бытовых электроприборов от перепадов напряжения и других дефектов электроснабжения, к которым можно отнести импульсные помехи и искажения синусоидальности.

выбор стабилизатора напряжения

Несмотря на то, что поставщик электроэнергии обязан обеспечивать ее надлежащее качество, а именно частоту 50 Гц и напряжение 220 В ±10%, зачастую эти требования не соблюдаются. На это влияет множество факторов, и что касается частоты, то с ней все в порядке, поскольку ее стабильность является залогом нормального функционирования всей энергетической системы.

А вот с напряжением дело обстоит вовсе не так гладко – в наших сетях можно наблюдать его колебания, иногда в достаточно широких пределах, а также резкие скачки. Электроприборы при этом работаю в экстремальных для себя условиях, что в конечном итоге может привести к преждевременному выходу их из строя.

Какой выбрать стабилизатор – трехфазный или однофазный?

Этот вопрос может возникнуть, только если имеется трехфазная сеть, поскольку при однофазной сети ответ очевиден – стабилизатор также должен быть однофазным.

однофазный стабилизатор напряжения

С трехфазной сетью не все так однозначно, поскольку во многих случаях можно обойтись однофазными стабилизаторами. Это позволит избежать отключения всей системы при потере напряжения на одной из фаз.

Несмотря на то, что на каждую фазу нужен отдельный стабилизатор, как правило три однофазных стабилизатора обходятся дешевле, чем один трехфазный. Без последнего никак не обойтись лишь в случае наличия хотя бы одного трехфазного потребителя.

Выбор стабилизатора по мощности

Мощность – это основная характеристика стабилизатора, по которой и происходит его выбор. Совершенно понятно, что мощность стабилизатора должна быть немного больше, чем суммарная мощность всех потребителей. Таким образом, перед тем как выбрать стабилизатор напряжения нужно правильно определить суммарную потребляемую мощность приборов, которые предстоит защищать.

как выбрать стабилизатор для дома

Стоит учитывать, что потребляемая мощность подразделяется на активную и реактивную, из которых состоит полная потребляемая мощность прибора. Обычно на приборах указывается активная потребляемая мощность (в ваттах, Вт), но в зависимости от типа нагрузки следует учитывать и реактивную мощность. Таким образом, при расчете мощности стабилизатора нужно учитывать полную потребляемую мощность, которая измеряется в вольт-амперах (ВА).

формула мощности для выбора стабилизатора

  • S - полная мощность, ВА;
  • P - активная мощность, Вт;
  • Q - реактивная мощность, ВАр.

Активная нагрузка непосредственно преобразуется в другие виды энергии – световую или тепловую. Примерами устройств с чисто активной нагрузкой могут служить обогреватели, утюги и лампы накаливания. При этом если устройство имеет потребляемую мощность в 1 кВт, то для его защиты достаточно стабилизатора мощностью 1 кВА.

Реактивная нагрузка имеет место в приборах с электродвигателями, а также в различных электронных устройствах. В приборах с вращающимися элементами говорят об индуктивной нагрузке, а в электронике – о емкостной.

На таких приборах кроме потребляемой активной мощности в ваттах обычно указывается еще один параметр – коэффициент cos(φ). С его помощью можно без труда вычислить полную потребляемую мощность.

Для этого активную мощность нужно разделить на cos(φ). К примеру, электродрель с активной мощностью в 700 Вт и cos(φ) равным 0,75 имеет полную потребляемую мощность в 933 ВА. На некоторых приборах коэффициент cos(φ) не указывают. Для примерного расчета его можно брать равным 0,7.

формула нахождения полной мощности

Немаловажно при выборе стабилизатора учитывать то, что у некоторых приборов пусковой ток в несколько раз превышает номинальный. Примером таких устройств могут быть приборы с асинхронными двигателями - холодильники и насосы. Для их нормального функционирования нужен стабилизатор, чья мощность в 2-3 раза превышает потребляемую.

Таблица 1. Приблизительная мощность электроприборов и их коэффициент мощности cos (φ)

 Бытовые электроприборы   Мощность, Вт   cos (φ) 
 Электроплита 1200 - 6000 1
 Обогреватель 500 - 2000 1
 Пылесос 500 - 2000 0.9
 Утюг 1000 - 2000 1
 Фен 600 - 2000 1
 Телевизор 100 - 400 1
 Холодильник 150 - 600 0.95
 СВЧ-печь 700 - 2000 1
 Электрочайник 1500 - 2000 1
 Лампы накаливания 60 - 250 1
 Люминисцентные лампы 20 - 400 0.95
 Бойлер 1500 - 2000 1
 Компьютер 350 - 700 0.95
 Кофеварка 650 - 1500 1
 Стиральная машина 1500 - 2500 0.9
 Электроинструмент  Мощность, Вт  cos (φ)
 Электродрель 400 - 1000 0.85
 Болгарка 600 - 3000  0.8
 Перфоратор 500 - 1200 0.85
 Компрессор 700 - 2500 0.7
 Электромоторы 250 - 3000 0.7 - 0.8
 Вакуумный насос 1000 - 2500 0.85
 Электросварка (дуговая) 1800 - 2500  0.3 - 0.6 

Кроме того, сами изготовители настоятельно рекомендуют использовать стабилизаторы с 20-30% запасом мощности.

Точность стабилизации для оптимальной защиты приборов

При выборе стабилизатора следует также учитывать максимально допустимый диапазон перепада напряжения для приборов, которые предстоит защищать.

Если речь идет об защите осветительных приборов, то для них необходимо выбирать стабилизатор с точностью стабилизации напряжения не менее 3%. Именно такая точность обеспечит отсутствие эффекта мерцания освещения даже при достаточно резких скачках напряжения в сети.

какие лучше выбрать стабилизаторы напряжения

Большинство бытовых электроприборов способны нормально работать при колебаниях напряжения в пределах 5-7%.

Как поступить – поставить один стабилизатор на всех потребителей, или на каждый отдельно?

Конечно, в идеале на каждый прибор, который необходимо защитить от скачков напряжения, следует ставит отдельный стабилизатор соответствующей мощности и точности стабилизации.

Однако с точки зрения материальных затрат такой подход не может быть оправданным. Поэтому чаще всего стабилизатор устанавливается на всю совокупность потребителей, и его мощность рассчитывается исходя из суммарной потребляемой мощности. Впрочем, возможен и другой подход.

К примеру, стабилизатором может быть защищен какой-либо один прибор. Кроме того, можно выделить группу электроприборов, защита которых от перепадов напряжения составляет насущную необходимость, и для их питания устанавливается стабилизатор, а остальные, не столь важные и чувствительные к перепадам, остаются без защиты.

Понравилась статья - сохрани на стену!

Выбор стабилизатора напряжения | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

В прошлой статье я рассказывал Вам про необходимость установки стабилизатора напряжения для дома, показатели качества электрической энергии и типы стабилизаторов. Сегодня проведем выбор стабилизатора напряжения по мощности на примере своего дома (дачи) в деревне. В конце статьи я расскажу Вам про виды крепления и установку стабилизаторов напряжения.

Пример выбора стабилизатора напряжения для однофазной сети

Вы решили приобрести стабилизатор напряжения, но не знаете, как его правильно выбрать. Привожу наглядный пример выбора стабилизатора напряжения для своего «домика в деревне».

Пока речь завели про деревянный дом, то рекомендую Вам почитать мои следующие полезные статьи:

1. Однофазная или трехфазная сеть

Для начала необходимо узнать количество фаз питающего напряжения. В моем примере это однофазная сеть, поэтому мне будет достаточно выбрать один однофазный стабилизатор напряжения.

Если у Вас трехфазная сеть, то в таком случае необходимо выбирать трехфазный стабилизатор напряжения, либо три однофазных стабилизатора, соединив их  «звездой».

2. Мощность потребителей

Теперь нам нужно определиться с мощностью потребителей, для которых будем использовать стабилизатор напряжения. Это может быть один или несколько электроприемников. Также стабилизатор напряжения можно установить на вводе для абсолютно всех потребителей. Но об этом чуть позже.

Мощность всех потребителей выписываю в один список с указанием их активной мощности. Активная мощность измеряется в ваттах (Вт). Ее можно найти в руководстве (паспорте) на прибор или на корпусе самого прибора.

Вот мой составленный список:

Подход к расчету мощности для выбора стабилизатора напряжения должен быть рациональным, ведь у Вас не всегда включены в сеть все перечисленные выше потребители. Поэтому здесь нужно точно определиться, что у нас будет включено одновременно.

Если не хотите с этим «заморачиваться», то берите всю мощность.

Например, для себя я определил потребителей, которые могут быть включены одновременно:

Далее из полученного списка необходимо выбрать те приборы, в которых содержатся электродвигатели.

Это нужно нам для того, чтобы учесть их пусковые токи, которые достигают величину в 3-5 раз больше, чем номинальные. Пусковая мощность или пусковой ток этих потребителей можно найти в паспортах. Если паспортов уже давно нет, то можно воспользоваться приблизительным расчетом, умножив их номинальную мощность на 3. Я так и сделал.

Далее рассчитаем общую полную мощность. Полная мощность измеряется в вольт-амперах (ВА) и отличается от активной мощности на коэффициент мощности «косинус фи» (cosφ). Этот коэффициент всегда указан в паспортах на приборы. Опять же, если паспортов у Вас нет, то можно принять приближенный cosφ = 0,75.

Еще хочу заметить, что нагреватель и утюг имеют cosφ = 1, т.к. это чисто активная нагрузка, которая идет только на образование тепла.

Освещение в моем доме выполнено с помощью энергосберегающих ламп, у которых коэффициент мощности равен примерно cosφ = 0,9. Кому интересно, то можете почитать мою статью о том, почему мигают энергосберегающие лампы.

Для остальных потребителей принимаем средний коэффициент мощности, равный cosφ = 0,75.

Чтобы перевести активную мощность в полную мощность необходимо разделить активную мощность на cosφ.

В итоге получаем суммарную полную мощность наших потребителей: 12322,22 + 12600 = 24922,22 (ВА) или 24,9 (кВА).

Можно округлить до 25 (кВА).

3. Фактическое напряжение сети

После расчета потребляемой мощности необходимо измерить фактическое напряжение питающей сети. Сделать это можно самостоятельно, воспользовавшись мультиметром. Более подробно об этом я писал в статье: «Как пользоваться мультиметром при измерении напряжения».

Еще вариант, это пригласить специалистов для проведения энергоаудита, но это обойдется Вам дороже. Они установят приборы на 24 часа для анализа качества электрической энергии и в конце выдадут Вам подробный отчет.

Допустим Вы зафиксировали, что напряжение в сети в вечернее время у Вас составляет 180 (В).

4. Выбор мощности стабилизатора напряжения

Номинальная полная мощность стабилизатора напряжения всегда указывается в вольт-амперах (В) и соответствует питающему напряжению 220 (В).

При снижении питающего напряжения, соответственно, снижается его выходная мощность. Также хочу сказать Вам, что не допускается длительная работа стабилизатора напряжения при пониженном напряжении, т.к. это вызывает перегрузку и может привести к его отключению, что приведет к обесточиванию всех потребителей.

Чтобы избежать таких последствий, необходимо к полученной полной мощности наших потребителей 25 (кВА) добавить коэффициент нижнего предела напряжения стабилизатора, который равен 1,2 при 180 (В), и 1,3 — при напряжении 170 (В). В нашем случае напряжение в вечернее время составляет 180 (В), поэтому применяем коэффициент 1,2.

25 · 1,2 = 30 (кВА)

Чтобы была возможность использовать стабилизатор напряжения длительное время со всей включенной нагрузкой, необходимо к полученной выше мощности добавить коэффициент запаса по мощности, равный 1,25.

30 · 1,25 = 37,5 (кВА)

Остается только выбрать стабилизатор напряжения из предложенных моделей, зная его необходимую мощность. Например, нам подойдет стабилизатор напряжения мощностью 40 (кВА) и больше.

 

Как выбрать стабилизатор напряжения для трехфазной сети

Выбор стабилизатора напряжения для трехфазной сети практически аналогичен. Производим расчет мощности для какой-то одной фазы, желательно наиболее загруженной. По этой фазе замеряем фактическое напряжение в сети в часы пиковых нагрузок. Полную мощность в вольт-амперах, умножаем на 3 (количество фаз).

Запас по мощности делаем порядка 10%.

Полученное значение и есть полная мощность стабилизатора напряжения для трехфазной сети. По этой мощности из всего ассортимента предлагаемой продукции выбираем необходимый стабилизатор напряжения.

А вообще выбор стабилизатора напряжения лучше доверить специалистам. Так будет надежнее.

Иногда меня спрашивают, можно ли вместо трехфазного стабилизатора напряжения приобрести три однофазных? Да конечно можно, так будет даже дешевле и практичнее. Например, при обрыве одной питающей фазы, остальные фазы будут в рабочем состоянии. Но если у Вас в доме имеется хоть какая нибудь трехфазная нагрузка, то в любом случае Вам нужен трехфазный стабилизатор напряжения, потому что он ведет контроль фаз по линейному напряжению сети. И если хоть одна фаза оборвется, то стабилизатор полностью отключается.

Еще два не менее важных совета по выбору стабилизатора напряжения для трехфазной сети:

  • стабилизаторы должны быть установлены в каждой фазе (оставлять без стабилизатора напряжения хоть одну фазу запрещено)
  • нагрузка по каждому стабилизатору напряжения должна быть примерно равная, иначе в нуле пойдет большой ток, который может вывести стабилизатор из строя
  • если разница линейных напряжений сети составляет более 25%, то стабилизаторы напряжений устанавливать запрещено

Функция BYPASS

Для начала давайте определимся что это за функция BYPASS (Байпас) и нужна ли она нам?

Практически во всех стабилизаторах мощностью от 3 (кВА) имеется функция BYPASS (Байпас). Включив автомат с этой надписью, стабилизатор на выходе выдает входное напряжение. Удобна эта функция тогда, когда напряжение в сети понижается не всегда, а например, только по вечерам, как в моем случае.

 

Выбор стабилизатора напряжения. Функция задержки

Еще одна из удобных функций стабилизатора напряжения, на которую стоит обратить внимание при покупке. Это функция задержки включения выходного напряжения, когда питающее напряжение вышло за пределы входного напряжения стабилизатора или совсем пропало. Существует несколько регулировок задержки — у разных производителей по-разному.

Крепление и установка стабилизатора напряжения

Стабилизатор напряжения можно крепить двумя способами:

  • на полу
  • на стене

Установка стабилизатора напряжения на полу или на полке применима к стабилизаторам небольшой мощности. У них малые габариты и вес. Например, мой небольшой и старенький стабилизатор напряжения «Ресанта» мощностью всего 0,5 (кВА) установлен прямо на подоконнике окна.

Более мощные стабилизаторы напряжения целесообразно размещать на стене, поэтому они выпускаются немного плоскими. Хотя по желанию их тоже можно установить на полу.

 

Заключение по выбору стабилизатора напряжения

В конце данной статьи хочу сделать небольшой вывод. Я показал пример расчета и выбора стабилизатора напряжения для однофазной сети. Мы получили, что стабилизатор напряжения для наших потребителей должен быть мощностью не ниже 37,5 (кВА). Можно идти покупать, но я задумался о его стоимости. Ведь стабилизатор напряжения такой мощности стоит совсем не дешево.

Как вариант можно через него не запитывать нагреватель и утюг, ведь при понижении напряжения в сети они будут лишь медленнее нагреваться. Остальным потребителям необходима только  качественная электрическая энергия. Если воспользоваться таким вариантом, то можно немного сэкономить.

P.S. На этом я заканчиваю статью на тему выбора стабилизатора напряжения. Если у Вас есть вопросы, то спрашивайте в комментариях. Можете поделиться данной статьей с друзьями и коллегами, особенно владельцев дач и домов. Спасибо.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


фото и видео рекомендации по выбору бытовых стабилизаторов

Нормализатор, регулятор, стабилизатор напряжения – вот, сколько названий у этого прибора. Его основное назначение – это привести скачки напряжения  в сети до стабильного и нормального, то есть, до 220 В, плюс-минус 10 В. Современный стабилизатор напряжения для дома – это небольшое компактное устройство, которое будет контролировать напряжение в сети и регулировать его в автоматическом режиме.

Обратите внимание, что существуют определенные отличия приборов, которые устанавливаются в частном доме или в квартире. И если стабилизатор для дома можно подбирать по критериям, которые соответствуют выбору промышленного образца, то офисные совместимы с квартирными. Отличия незначительные, но они есть. Так что ниже будем на них обращать внимание и отмечать. Но основная тема статьи, как выбрать стабилизатор напряжения 220В для дома?

Стабилизатор для дома

Вопросы по выбору

Итак, есть несколько основных вопросов, на которые придется отвечать в этой статье. Вот они:

  1. Лучший стабилизатор напряжения – это однофазный на 220 в или трехфазный на 380 в?
  2. Можно ли заменит трехфазный тремя однофазными?
  3. Какой стабилизатор напряжения, имеется в виду тип, выбрать?
  4. Мощность прибора?

Ответ на вопрос №1

Все будет зависеть от того, куда сам прибор покупается. Если это квартира или маленькая дача, то внутри укладываются электрические сети на 220 в. Если это большой загородный дом, то тут могут возникнуть две ситуации. То есть, это может быть сеть или с напряжением в 220 в, или в 380 в.

Схема подключения стабилизатора

Как же определить неспециалисту, сколько фаз входит в дом?

  1. Если это частный дом, то обратите внимание, сколько проводов подводится к зданию. Или посмотреть в распределительном щите количество жил подводящего кабеля. То же самое и с квартирой. Так вот в доме это должно быть две жилы, в квартире четыре, здесь присутствует заземление. В большой частный дом с тремя фазами входит кабель с четырьмя жилами.
  2. Если возможности посмотреть количество жил нет, тогда посмотрите на индикатор счетчика. Если в нем один световой индикатор, то это однофазная сеть, если три – трехфазная.
  3. Обратите внимание на автомат, который устанавливается в распределительном щите до или после счетчика. Если он одно- или двухполюсной, значит, в вашем доме однофазная система подключения электричества. Если автомат трех- или четырехполюсной, то трехфазная.

Итак, после определения количества входящих в ваш дом фаз, можно сказать, какой стабилизатор напряжения для частного дома вам необходим.

Схема подключения к однофазной сетиСхема подключения к однофазной сети

Ответ на вопрос №2

Что собой представляет трехфазный стабилизатор, к примеру, на 10 кВт. По сути, это три однофазных прибора, которые объединены в один корпус с единой защитной системой. Стабилизатор устанавливается около распределительного щитка, и через него пропускаются кабели, соединяющие три фазы, разбросанные по объектам. К примеру, схема может быть такой:

  • Одна фаза питает первый этаж дома.
  • Вторая второй этаж.
  • Третья хозяйственные постройки (гараж, баню, сарай, летнюю кухню и так далее).

Что получается на практике. Если в сети подачи электроэнергии происходит, к примеру, короткое замыкание, то срабатывает сразу защитный блок, который отключает бытовой стабилизатор напряжения. То есть, обесточивается весь дом и хозяйственные постройки. Очень неудобно.

Подключение однофазных стабилизаторов в трехфазную сеть.Подключение однофазных стабилизаторов в трехфазную сеть.

Поэтому лучше использовать другой вариант для дома и дачи. Это установка трех однофазных стабилизатора, которые будут подключены каждый к своей фазе. То есть, при аварии на одной из фаз произойдет отключение ее стабилизатора напряжения. Остальные фазы будут работать в штатном режиме. При проведении ремонтных работ отключать остальные работающие фазы нет необходимости.

Но тут перед потребителем встает дополнительный вопрос, какой стабилизатор, имеется в виду по мощности, надо установить на каждую фазу. Вспомните рассматриваемую выше схему по этажам. Обычно на первом этаже располагаются служебные помещения: кухня, ванная, столовая, которые оборудованы большим количеством электроприборов: посудомоечные и стиральные машины, микроволновки, утюги, электрочайники и так далее. На эту фазу лучше всего установить стабилизатор 10 кВт. На второй этаж подойдет пятикиловаттный прибор. А вот на третью фазу можно нормализатор и не ставить, потому что подсобные пристройки используются периодически и точных приборов там нет.

Но и это еще не все. К примеру, фаза второго этажа запитана на компьютеры, телевизоры и другие виды бытовой техники, которым требуется точности в напряжении. Поэтому сюда необходимо провести установку стабилизатора напряжения электромеханического действия. Он дорогой. А вот на первый этаж можно установить более дешевый аналог – релейный (электронный стабилизатор напряжения).

Ответ на вопрос №3

Что касается типов стабилизаторов напряжения, то тут не очень большой выбор. В настоящее время на российском рынке присутствует три основные категории:

  1. Электромеханические.
  2. Релейные.
  3. Электромагнитные.
Релейный стабилизатор

Релейный вариант можно считать самым распространенным в России. И все благодаря низкой цене изделия. По сути, это ступенчатый прибор, который работает по принципу переключения нескольких реле, реагирующих на потребляемую мощность на выходе. И это является определенным недостатком.

Релейный стабилизатор напряжения SuntekРелейный стабилизатор напряжения Suntek

К примеру, на выходе 190 В, значит, на выходе будет 228 В. При повышении входного напряжения на 5 В, на выходе получится 233 В. Дальнейшее повышение напряжения на входе даст снижение его на выходе. То есть, входное – 200 В, на выходе 218 В. Далее, на входе 210, на выходе 210, Вот такой вот парадокс.

Вывод таков, что релейный стабилизатор не может на выходе все время выдавать напряжение в 220 В. Поэтому если вы приобрели данную модель, и она показывает все время 220 В, то стоит задуматься над тем, а правильно ли работает прибор, на самом деле ли выходное напряжение имеет этот показатель.

Технические характеристики:

  • Скорость стабилизации 20 В/с.
  • Точность напряжения на выходе с погрешностью 6-8%.
Электромеханический
Схема электромеханического стабилизатора напряженияСхема электромеханического стабилизатора напряжения

На российском рынке первым появился именно он. Эта модель долго держала первое место в продажах, пока не появился более дешевый релейный тип. По сути, это антипод релейному варианту. У него высокая точность стабилизации до 3%, но низкая скорость до 10 В/с.

Чисто конструктивно электромеханический аналог от релейного отличается тем, что в его конструкции присутствует вольтодобавочный трансформатор и поворотный щеточный контакт. Все работает за счет сервопривода. Чем мощнее прибор, тем больше в нем трансформаторов.

АО сравнению с релейными стабилизаторами эти лучше. Но у них есть один недостаток – это движущая часть поворотного контакта, которая со временем истирается и выходит из строя. Поменять ее, конечно, несложно, но это большое неудобство.

Электромагнитный

Этот прибор самый стабильный и является обладателем самого высокого срока эксплуатации. Скорость стабилизации у него тоже большая – 100 В/с. Точность составляет 1%. Во всем остальном он уступает двум первым.

Устройство стабилизатораУстройство стабилизатора

Недостатки:

  • Высокая цена.
  • Чувствительность к перегрузкам.
  • Шум при работе.
  • Внушительные габариты, а, значит, и вес.
  • Перестает работать, если входное напряжение падает ниже 20% от номинала.

Ответ на вопрос №4

Что касается мощности, тот тут необходимо учитывать потребляемую мощность на каждой фазе. Выше уже был рассмотрен пример с двухэтажным строением и пристройками. Так вот подбор придется производить, складывая мощность каждого электрического прибора. Сумма и будет являться ориентировочным показателем. Специалисты рекомендуют прибавить к нему еще 15-20%.

Таблица мощности, потребляемой электроприборами

Внимание! Есть такое мнение, что с понижением входного напряжения мощность прибора падает соответственно. И это правда. Но есть и другое мнение, что это происходит только у дешевых стабилизаторов. А вот это ошибочное мнение.

И еще один момент. Мощность стабилизатора напряжения измеряется не в кВт, а в кВА. К примеру, 10 кВт – это потребляемая мощность приборов. А 10 кВА – это полная мощность нормализатора, равная активному и реактивному ее показателю.

Почему же, к примеру, производители указывают не 10 кВт, а 10 кВА? Все дело в том, что производитель не знает нагрузку в доме, то есть, она активная или активно-реактивная (и в каком все это соотношении). И еще производитель не может знать напряжение в сети. Оно нормальное, пониженное или повышенное. В общем, на стабилизаторе указывается общая мощность.

Полезные советы

  1. Корпус прибора необходимо заземлить.
  2. Перед стабилизатором обязательно устанавливается УЗО.
  3. На трехфазные стабилизаторы напряжения надо обязательно установить реле контроля фаз.
  4. Электромеханический прибор издает шум вращающихся щеток, релейный издает звуки клацанья реле. Но все это происходит лишь при скачках напряжения.
Щетки стабилизатора напряженияЩетки стабилизатора напряжения

Заключение по теме

Итак, в этой статье было разобрано несколько вопросов, которые можно объединить в один, как правильно подобрать стабилизатор напряжения для дома. Вся информация была сжата до минимума. Если разбираться в этом вопросе досконально, то придется вдаваться в дебри электроники и электротехники. А это уже специальные научные разделы, в которых много терминов и непонятных названий для простого потребителя.

Как рассчитать мощность стабилизатора напряжения для дома

Правильный подбор стабилизатора напряжения необходимо выполнять по основному параметру – общей мощности электроприборов, которые необходимо защитить от чрезмерной нагрузки и перепадов напряжения, подключенных к определенной сети питания.

Однофазные устройства устанавливают чаще всего для создания качественных параметров напряжения в небольшом офисе, квартире. Чтобы правильно рассчитать мощность стабилизатора, необходимо сначала сложить мощность всех электрических устройств. Кроме мощности по паспорту устройства, оснащенного электродвигателем, нужно учесть пусковой ток. Для этого к расчету добавляют около 30% мощности.

Наличие в цепи стабилизатора напряжения дает возможность обеспечить защиту бытовой техники. Через стабилизатор можно подключить отдельные приборы, однако эффективнее всего будет выбор прибора, через которое будет работать все оборудование

Расчет по техническим характеристикам

Каждый прибор в комплекте имеет паспорт, где указаны все характеристики работы. В нем указана мощность устройства. Необходимо суммировать все значения устройств. Эта величина будет приблизительной.

К ней необходимо добавить запас мощности около 30% для пусковых токов, и также 50% для устройств, изготовленных в Китае.

Мощность стабилизатора напряжения по автоматам

Оптимальным методом является посмотреть значение мощности на автоматах входа, находящихся в щитке. Они расположены вместе со счетчиком электрической энергии. Электронный стабилизатор рассчитать намного проще:

  1. Сначала определяем номинал автомата.
  2. Далее, эту величину делим на 5. В результате получаем необходимую полную мощность вашего стабилизатора.

Если автоматы на 25 А, то маркировка стоит С25. В результате деления получаем 5 кВА. Если у вас в квартире никогда не выбивало автоматы, то значит нагрузка вашей квартиры меньше 5 кВА. По этой информации подбираем полную мощность стабилизатора.

Расчет мощности стабилизатора будет сложнее, если в щите есть несколько автоматов. Необходимо выписать все значения с них. И по этим данным осуществляют подбор стабилизатора.

Стабилизаторы серии ЛЮКС функционируют без снижения мощности при низком напряжении. Элемент измерения находится на выходе устройства. В итоге защита сработает, когда потребитель превысит более 100% нагрузки от заданных номиналов. При пониженном напряжении на входе сила тока возрастет. В итоге падение напряжения будет оплачивать производитель устройства, а не потребитель.

Подкатегории стабилизаторов

Существуют различные типы стабилизирующих устройств с разным типом работы. Рассмотрим основные из таких стабилизаторов, для облегчения выбора в торговой сети.

Релейные

При повышенной скорости регулирования, сильных скачках напряжения, за небольшой промежуток несколько раз, стабилизаторы работают с малой точностью, при работе способны издавать щелчки. Это работает реле, переключает ступени трансформатора.

Тиристорные

Такие устройства еще называют симисторными. Они относятся к электронным приборам. Их повышенная точность и скорость регулирования напряжения питания, бесшумность работы привлекает покупателей при приобретении.

Из недостатков можно отметить различные микросекундные провалы при переключении. Однако, даже имею повышенную стоимость, для домашнего использования они вполне подходят. Чаще всего на такие приборы заводы изготовители дают расширенную длительную гарантию.

Электромеханические

К таким типам приборов относятся: сервоприводные, роликовые, щеточные, и электродинамические устройства. Они обладают повышенной точностью регулирования, не имеют шума при работе, постепенного изменения напряжения при входных колебаниях питания.

Одним из недостатков является быстрый износ узла щеток из-за повышенного искрообразования при значительной нагрузке. Стабилизаторы напряжения электродинамического вида, роликовые фирмы Ortea не имеют таких недостатков. Они являются оптимальным выбором для частного дома.

Особенности расчётов

Параметров выбора приборов стабилизации существует много. Одним из основных является полная мощность стабилизатора напряжения. Речь идет о характеристике напряжения и тока, то есть, о параметрах выхода тока, которые устройство может поддерживать в номинальном режиме работы. Однако исходными данными расчета становится расходуемая мощность устройств, которые будут подключаться к прибору.

  • Иногда к стабилизатору подключают дополнительное оборудование. При этом нужно учитывать это показатель мощности при расчете.
  • Если вы планируете устанавливать внешние циркуляционные насосы, то необходимо брать в расчет также их мощность.
  • При преобразовании напряжения до требуемого значения всегда имеются потери мощности. Чем больше отклонение от 220 вольт, тем выше эти потери. Поэтому перед расчетом, целесообразно сделать проверку – измерить сетевое напряжение днем, вечером, утром, и в часы «пик». Эту проверку лучше провести за несколько дней. В результате вы получите информацию, которая вам пригодится для расчетов.
  • Обычная сумма значений мощности будет неточными данными, так как значительное число приборов расходует кроме полезной мощности, также и реактивную составляющую. Она определяется по определенной формуле, и добавляется в результаты расчета.

Особенности выбора стабилизатора

Необходимо заметить, что если ваша электросеть способна выдать в пиковые часы напряжение 120 вольт, то понятно, что в это время нельзя подключать к прибору другие устройства значительной мощности. При таком режиме допускается подключать только маломощные потребители в виде телевизора, освещения. А такие устройства, как чайник, бойлер или стиральная машина перегрузят бытовую сеть, и защита обесточит всю вашу квартиру.

В торговой сети продавцы чаще всего говорят, что мощность при малых напряжениях входа теряется только на недорогих стабилизаторах. Однако, практически это далеко не так. Даже дорогой прибор не способен сделать чудо, и нарушить законы физики.

Многие изготовители стабилизаторов вместо Вт в инструкции указывают В/А. Это делается для введения покупателей в заблуждение, так как имеются приборы, расходующие электроэнергию, с разными типами нагрузки:

  1. Активная нагрузка (лампы освещения, нагревательные элементы).
  2. Реактивная нагрузка (электродвигатели).

При расчете мощности следует учитывать сечение кабеля. При размере в 4 кв. мм нагрузка не должна превышать 10 киловатт. Следовательно, если купить при этом стабилизатор выше 10 кВт, то это не даст больше мощности, и вы зря потратите деньги.

инверторный, релейный, электронный или сервоприводный, основные характеристики и особенности

Однофазные стабилизаторы напряжения картинка

16.09.2019

Чтобы выбрать подходящий стабилизатор напряжения для защиты бытовой техники, сначала важно понять, сколько фаз в электросети вашего дома.

Существуют сети трехфазного и однофазного переменного тока. Трехфазные сети чаще всего используются в электроснабжении промышленных предприятий различных отраслей, реже для объектов бытового сектора, например, частных коттеджей, загородных домов с большим потреблением электроэнергии.

Электроснабжение большинства наших квартир и жилых домов реализовано однофазными электрическими сетями, то есть питающими линиями с одним фазным и нулевым рабочим проводниками, напряжение между которыми составляет 220 В.

К сожалению, далеко не всегда у нас в доме значение напряжения соответствует этому вольтажу. Многие из нас сталкивались с пониженным или повышенным напряжением – его недопустимыми колебаниями, которые являлись причиной поломки или выхода из строя бытовой техники.

В этой статье мы расскажем об однофазных стабилизаторах – устройствах, которые защитят вашу технику от таких негативных последствий. Мы постараемся подробно описать их типы, особенности работы, плюсы и минусы. Ну и, конечно же, посоветуем, как правильно выбрать подходящее устройство.

Особенности однофазных стабилизаторов напряжения

Любой современный стабилизатор напряжения является достаточно сложным высокотехнологичным устройством с автоматическим режимом работы, не требующим никаких вмешательств пользователя.

Как работают?

Однофазные стабилизаторы с трансформаторным преобразованием (релейные, тиристорные, симисторные) имеют общий алгоритм построения защиты нагрузки от некачественного напряжения. Входное напряжение сети поступает на электронную плату управления, где происходит его измерение и сравнение с номинальным значением. При возникновении его недопустимого отклонения блок управления подает сигнал на исполнительный элемент, который корректирует напряжение.

Принципиально по-другому работают стабилизаторы инверторного типа. Преобразование напряжения в них проходит в две стадии: сначала выпрямитель преобразует нестабильное переменное напряжение в постоянное, а затем инвертор снова создает из него переменное напряжение требуемого значения со стабильным синусом.

Читатели, знакомые с принципом действия источников бесперебойного питания (ИБП) топологии online, могут отметить схожесть их работы с инверторными стабилизаторами: постоянное двойное преобразование напряжения, полностью исключающее задержку стабилизации.

Где применяются?

Довольно широкое применение однофазные стабилизаторы нашли в быту, ведь в основном питание квартир и жилых домов однофазное. Кроме того, устройства также эффективно могут применяться для защиты однофазных нагрузок производственных, торговых, складских, офисных или административных помещений.

Сфера их применения во многом определятся выходной мощностью. Так, стабилизаторы мощность до 1000 ВА чаще всего используются локально, то есть для защиты одного или нескольких электроприборов. Для магистрального использования в быту и питания нагрузок с высокими пусковыми токами подойдут устройства мощностью 1500-10000 ВА.

Как показывает практика, для защиты электроприборов квартиры или частного дома в среднем бывает достаточно стабилизатора мощностью 5000 ВА, используемого в качестве магистрального. Для мощного однофазного оборудования промышленных предприятий предполагается использование устройств мощностью до 100 кВА.

Как подключаются?

Известно, что любая однофазная электрическая цепь состоит всего из двух рабочих проводников (фазного L и нулевого N) и одного защитного заземляющего (PE). Поэтому для подключения однофазного стабилизатора (если говорить о мощном устройстве) достаточно присоединить эти проводники питающей сети к его входными клеммам на корпусе, а защищаемый электроприбор подключить к выходным клеммам, разумеется, не забыв о проводнике заземления.

Подключение маломощных стабилизаторов к сети еще более простой процесс, который не требует каких-то специальных знаний и выполняется обычным включением вилки в розетку. Аналогичным штепсельным соединением подключается и защищаемый электроприбор – к розетке, расположенной на панели стабилизатора.

Очевидно, что все однофазные стабилизаторы предназначены для защиты однофазных электроприборов. Однако это не говорит об их возможности работы лишь в однофазных сетях. Существует множество примеров организации защиты однофазных электроприборов в трехфазных сетях с помощью однофазных стабилизаторов.

Устройства при этом могут работать как магистральные (коррекция и стабилизация напряжения всей сети дома), так и локальные (защита только некоторых электроприборов). Ограничением на использование однофазных стабилизаторов в трехфазной сети может быть только наличие хотя бы одной трехфазной техники (например, электроплиты). Для ее корректной защиты должен применяться только трехфазный стабилизатор.

Типы однофазных стабилизаторов напряжения

Один из важных факторов при выборе стабилизатора – это его тип. По внутреннему устройству и принципу работы различают несколько типов однофазных стабилизаторов напряжения.

Электромеханические стабилизаторы

Преобразование и коррекция напряжения в них выполняется автотрансформатором тороидальной формы. Поступающее на автотрансформатор напряжение сети контролируется электронной схемой, которая при его отклонении подает управляющий сигнал на электродвигатель (сервопривод).

Сервопривод – это электродвигатель, который приводит в движение токосъемные графитовые щетки: они скользят по виткам катушки автотрансформатора и снимают вторичное напряжение. Очевидно, что разное количество задействованных витков обмотки автотрансформатора при размещении щеток в определенных его сегментах даст разный коэффициент трансформации, понижая или повышая напряжение сети до значения нормы.

Схема электромеханического стабилизатора картинка

Рисунок 1 – Схема электромеханического стабилизатора напряжения


Преимущества

Недостатки

  • Высокая точность стабилизации (благодаря возможности снять напряжение с любого витка обмотки).

  • Плавность регулировки.

  • Высокий КПД.

  • Стойкость к перегрузкам.

  • Невысокая стоимость.

  • Подверженность к механическим поломкам и износу узла сервопривода, необходимость проведения регулярного обслуживания, замены токосъемных щеток.

  • Низкая скорость реагирования на отклонение напряжения в сети.


Релейные стабилизаторы

Преобразование напряжения в этих устройствах выполняется также автотрансформатором. Принципиальное их отличие от электромеханических состоит в способе передачи вторичного напряжения. В релейных стабилизаторах снятие вторичного напряжения выполняется не с витков катушки, а через выводы (отпайки от обмотки), каждому из которых соответствует свой коэффициент трансформации. На каждом таком выводе установлены силовые реле, которые переключают питание подключенных приборов на определенную секцию обмотки, в зависимости от уровня входного напряжения.

Схема релейного стабилизатор картинка

Рисунок 2 – Схема релейного стабилизатора напряжения


Преимущества

Недостатки

  • Отсутствие сервопривода и подвижной контактной системы.

  • Высокая скорость стабилизации.

  • Высокая надежность работы.

  • Широкий диапазон рабочих температур.

  • Небольшая стоимость.

  • Низкая точность коррекции выходного напряжения.

  • Ступенчатость регулирования.

  • Возможно кратковременное пропадание напряжения при переключении реле.


Электронные стабилизаторы

Принцип их работы во многом схож с релейными устройствами. Основным отличием между ними является способ коммутации выходного напряжения с отводов автотрансформатора. Применение электронных силовых ключей вместо реле и дало название стабилизаторам этого типа. В зависимости от используемых полупроводниковых ключей различают симисторные и тиристорные устройства.

Схема электронного стабилизатора картинка

Рисунок 3 – Схема электронного стабилизатора напряжения


Преимущества

Недостатки

  • Высокое быстродействие.

  • Неплохая плавность регулирования на выходе (достигается увеличением количества силовых ключей – уменьшением диапазона напряжения ступеней).

  • Точность коррекции.

  • Бесшумность работы.

  • Надежность в эксплуатации (полное отсутствие механических устройств и узлов исключает вероятность поломок и износа деталей).

  • Способность работать при отрицательной температуре.

  • Невысокая стойкость к перегрузкам (при значительном превышении мощности нагрузки возможен выход силовых ключей из строя).

  • Высокая стоимость.


Инверторные стабилизаторы

В настоящее время эти стабилизаторы по праву считаются наиболее совершенными. Используя передовой бестрансформаторный способ двойного преобразования напряжения, эти устройства превосходят аналоги других типов по всем техническим характеристикам.

Технология двойного преобразования предполагает две стадии преобразования переменного тока. Переменное напряжение сети, проходя через частотный фильтр, преобразуется выпрямителем в постоянное и скапливается на пластинах конденсаторов. Далее постоянное напряжение преобразуется инвертором в переменное с эталонным показателем напряжения, частотой и формой сигнала.

Используемая технология полностью исключает влияние негативных явлений в питающей сети на выходное напряжение, обеспечивая качественное электропитание, подходящее для любой нагрузки.

Схема инверторного стабилизатора картинка

Рисунок 4 – Схема инверторного стабилизатора напряжения


Преимущества

Недостатки

  • Высочайшее быстродействие.

  • Высокая точность стабилизации.

  • Идеальная синусоида на выходе даже при значительно модифицированной на входе.

  • Полное подавление коммутационных, импульсных и высокочастотных помех.

  • Широкий диапазон входного напряжения.

  • Высокий КДП.


Характеристики однофазных стабилизаторов

Скорость стабилизации

Важнейший для любой нагрузки параметр. Это промежуток времени, в течение которого стабилизатор при колебаниях напряжения в сети откорректирует его значение на выходе до нормального. Лучшими показателями быстродействия обладают инверторные устройства, у которых полностью отсутствует время задержки реагирования на скачки напряжения (0 мс).

Диапазон рабочего напряжения

Не менее важная техническая характеристика, определяющая верхний и нижний пороги напряжения в сети, при которых возможна работа стабилизатора. Подбирается в соответствии с возможными отклонениями напряжения в сети.

Точность работы

Качественная характеристика, показывающая насколько точно устройство регулирует входное напряжение, то есть способность стабилизатора максимально приблизить значение выходного напряжения к номинальному.

Конструктивное исполнение и способ установки

Существуют устройства напольной и настенной установки, а также вертикального, горизонтального и универсального исполнения (Rack/Tower).

Набор защит

Наличие функций защитного отключения при выходе значения напряжения за пределы рабочего диапазона, возникновении токовых перегрузок в цепи питания нагрузки, недопустимого нагрева трансформатора и др.

Мониторинг и индикация

Функции, позволяющие отображать и анализировать работу стабилизатора, а также осуществлять удаленное управление, мониторинг процесса стабилизации. Стандартные средства индикации – светодиоды и/или ЖК-дисплей, отображающие текущий статус работы устройства и значения параметров стабилизации.

Для организации удаленного управления и мониторинга работы современные модели стабилизаторов могут быть оснащены различными коммуникационными интерфейсами, поддерживающими наиболее востребованные протоколы передачи данных.

Мощность стабилизатора

Ее следует выбирать в соответствии с мощностью подключаемых электроприборов и с некоторым запасом. Только таким образом можно обеспечить качественную работу устройства. Выбор стабилизатора существенно завышенной мощности также нежелателен из-за необоснованно высоких финансовых расходов и неоправданно больших габаритных размеров устройств.

Вполне разумный и рекомендуемый производителями резерв по мощности составляет треть от суммарной мощности подключаемых устройств. Кроме этого, необходимо учитывать и характер нагрузки.

При наличии электроприборов с большой реактивной составляющей потребления, например, электродвигателей с высокими пусковыми токами, превышающими номинальные в несколько раз, резерв по мощности целесообразно увеличить.

Какой тип стабилизатора выбрать?

Правильный выбор однофазного стабилизатора напряжения предполагает руководствоваться типом устройства и необходимой мощностью. Эти факторы в свою очередь определяются видом нагрузки, характером проблем электрической сети (длительностью, величиной отклонения напряжения, частотой, искаженностью формы сигнала) и суммарной мощностью подключаемого оборудования.

Однофазный стабилизатор каждого из указанных типов имеет свои особенности технических характеристик, от которых зависят эффективность защиты и надежность эксплуатации подключенных электроприборов.

Применение электромеханических устройств возможно в сетях с продолжительными колебаниями напряжения (допустимо с большой амплитудой). Интенсивность режима работы сервопривода при кратковременных и частых скачках напряжения приводят к скорому износу щеток и сокращению его рабочего ресурса.

Кроме того, низкая скорость коррекции сервоприводных устройств при частых скачках напряжения не позволяет применять их для защиты чувствительной к питанию техники. Неплохим бюджетным решением будет использование сервоприводных стабилизаторов для защиты нетребовательной к питанию нагрузки, например, нагревательных или осветительных приборов.

Отличаясь гораздо большим быстродействием, устройства релейного типа более предпочтительны для применения в сетях с нестабильным напряжением. Однако ступенчатость и низкая точность коррекции также исключает возможность их использования для защиты требовательной к качеству электропитания нагрузки. Интенсивный режим работы в сетях с постоянными колебаниями напряжения, сопровождаемый частыми срабатываниями электромеханических реле способствует быстрому их износу и выходу из строя. Поэтому в сетях с плохими показателями качества электроэнергии от использования стабилизаторов этого типа стоит отказаться.

Надежную защиту способны обеспечить устройства электронного типа. Они выигрывают по показателях быстродействия и коммутационной стойкости у вышеперечисленных устройств и подойдут для работы в сетях с частыми колебаниями напряжения большой амплитуды для защиты практически любой техники. При покупке такого стабилизатора важно обращать внимание на количество полупроводниковых ключей в его схеме, определяющее количество ступеней переключения, а, следовательно, и точность стабилизации – приближенность значения выходного напряжения к номинальному.

Лучшая рекомендация для достижения максимально высокого уровня защиты и надежности эксплуатации любой нагрузки – это применение инверторных стабилизаторов. Превосходя аналоги других типов по всем техническим характеристикам, эти устройства гарантированно обеспечивают защиту самого ответственного оборудования, даже в сетях с крайне низким качеством напряжения. Устройства успешно справляются с эффективной защитой самого электрочувствительного оборудования – компьютеров и периферийных устройств, автоматики отопительных котлов, серверного, измерительного и медицинского оборудования.

Ознакомиться с модельным рядом однофазных инверторных стабилизаторов «Штиль».

Видеообзор инверторных стабилизаторов напряжения «Штиль»

Для чего нужен стабилизатор напряжения

Стабилизатор – это устройство, представляющее собой электрический прибор, который используется для выравнивания колебаний напряжения сети при подаче тока на технику, такую как компьютеры, кондиционеры, насосы и др.

Для чего нужен стабилизатор напряжения? Регулятор в основном предназначен:

  • защищать электрооборудование от различных угроз, таких как колебания напряжения, высокое и низкое напряжение;
  • отключать технику от некачественного электропитания, при увеличении или снижении пороговых значений напряжения;
  • поддерживать напряжение на надлежащем уровне.

Этот аппарат имеет множество уникальных особенностей, которые позволяют экономить электроэнергию, влиять на производительность и повышать надежность техники. На дисплее аппарата высвечиваются основные параметры электрической сети, быть всегда в курсе о них – это значит владеть ситуацией. Функция задержки включения обеспечивает передышку и стабилизирует питание перед подачей на нагрузку, следовательно, увеличивает срок службы приборов.

И всё-таки, зачем нужен стабилизатор? Его использование представляет собой самую доступную и эффективную меру энергосбережения, сохранения приборов от выхода из строя и душевного спокойствия домочадцев.

Несколько советов по выбору стабилизатора

Если устройство выбрано правильно, то на него всегда можно положиться и довериться. Если в технике не особо разбираться, то можно положиться на предложения и советы продавца по выбору стабилизатора напряжения. Профессионал порекомендует для начала:

  • определиться с мощностью, типом стабилизатора и рабочим диапазоном напряжения;
  • выявить и проанализировать проблематику: повышенное, пониженное или скачкообразно изменяющееся напряжение в сети питания.

Исходя из полученных данных, затем приступить к выбору устройства.

Как правильно рассчитать мощность прибора? В идеале нужно определить, какой самый мощный потребитель присутствует в схеме электроснабжения. Допустим, электроприёмниками являются насосная станция мощностью 1, 5 кВт, сауна – 10 кВт плюс ещё какой-либо прибор с большим энергопотреблением. Все значения в киловаттах необходимо сложить и получить искомую мощность прибора.

Стабилизатор выбирается с небольшим запасом мощности (20%), особенно если в цепи присутствует оборудование с большим пусковым током. Речь идёт об электродвигателях и насосах, которые при пуске потребляют энергии больше, чем в обычном режиме.

Запас мощности обеспечивает долгую жизнь прибора, благодаря щадящему режиму работы, и создаёт резервный потенциал для подключения нового оборудования.

Выбирая стабилизатор также нужно учитывать сервисное обслуживание, потому что прибор следует правильно и качественно подключить, а также воспользоваться гарантийным сроком и отремонтировать в случае неисправности.

Как правильно выбирать стабилизатор напряжения для дома?

Можно воспользоваться самым простым вариантом: определить потребление мощности из сети по номиналу вводного автомата в квартирном щитке. Таким образом, узнаётся пропускная способность автомата и максимально возможная мощность потребления на бытовые нужды.

Приведём простой пример. Как выбрать стабилизатор напряжения 220 В для дома, если на вводе стоит автомат S40. С таким номинальным током от сети можно получить не более 10 кВт. Исходя из расчётных данных, и выбирается аппарат.

На сегодняшний день низкое напряжение в сети – проблема весьма актуальная и решить её лучше всего одним способом – приобрести стабилизатор, который защитит всю технику в доме от выхода из строя. Чтобы правильно выбрать устройство, сначала нужно разобраться с его разновидностями, а также преимуществами каждого варианта исполнения.

Типы защитных устройств

Самыми популярными типами стабилизаторов на сегодня являются:

  • электронные,
  • электромеханические.

Электронные стабилизаторы напряжения – это приборы наилучшего качества. Ввиду отсутствия механических частей характеризуются большим сроком службы, минимум 15 лет, и довольно высокой надёжностью. Можно подбирать по рабочему диапазону напряжений практически под любые задачи.

Электромеханические стабилизаторы напряжения характеризуются небольшим быстродействием, узким диапазоном напряжений, но зато хорошей перегрузочной способностью.

Полезная информация о стабилизаторах напряжения по поводу высокой точности

Многие стараются выбрать устройство с максимальной точностью стабилизации, вплоть до 0,5 %. Однако, как правило, отклонение в 10–15 В считается нормальным режимом работы для большинства техники. И только в редких случаях оборудование при таких отклонениях не работает или капризничает. Большая часть предлагаемых на рынке стабилизаторов обеспечивает именно такой режим работы.

Частым заблуждением покупателей является то, что приобретаемое устройство с высокой точностью стабилизации – это гарантия стабильного напряжения и отсутствие мерцания света. На самом деле, получается наоборот: чем больше точность у прибора, тем чаще он переключается, подстраиваясь под входную сеть, поэтому и лампочки не перестают мерцать. Это касается ламп накаливания и галогенок.

При установке стабилизатора симисторного и релейного типа мерцание лампочек стопроцентно будет сохраняться. Исключение составляют лишь стабилизаторы с плавной регулировкой сигнала. Это касается новых разработок стабилизаторов, таких как Вольтер. При выборе регулятора желательно руководствоваться рекомендациями от производителя или профессионалов. Можно для верности ещё почитать положительные и отрицательные отзывы в интернете на конкретную модель или бренд.

Какой выбрать однофазный или трехфазный?

Если в дом заведены три фазы, совсем необязательно устанавливать трёхфазный стабилизатор. Чаще всего, оказывается, можно обойтись однофазниками. При этом преимуществ можно получить очень много.

Во-первых, по стоимости, которая в общей сложности у трёх однофазных меньше, чем у трёхфазного. Во-вторых, по ремонтопригодности более надёжно. Одно дело – снять один блок и отвести его на ремонт, другое – снять полностью аппарат.

Коммерческая выгода от установки стабилизатора напряжения

Отечественные электросети физически сильно изношены, а местами и морально устарели. А потребителей становится всё больше и больше. Установка стабилизаторов выгодна по нескольким причинам:

  1. современная техника оснащена электронной начинкой, которой важно качественное питание. Для того чтобы она не вышла из строя или не подвергалась дорогостоящему ремонту, необходима установка стабилизатора;
  2. пониженное напряжение влечёт за собой большее потребление тока из сети. Приходится платить больше за расход электроэнергии. Выгода стабилизатора очевидна;
  3. повышенное напряжение может привести к короткому замыканию, перегреву проводов и пожару. Без стабилизатора в этом случае материальный и моральный ущерб может быть колоссальный, а то и непоправимый;
  4. при нормальном напряжении тоже могут случиться внезапные импульсы от молнии, ошибок персонала, перекоса фаз в час пик.

Во всех этих и других непредвиденных случаях стабилизатор напряжения поможет сберечь время, средства и нервы.

Возможные последствия для приборов (электрических потребителей) в условиях отклонения напряжения от нормы

  • Снижение напряжения приводит к уменьшению светового потока ламп. При плохом свете снижается производительность качество выполняемой работы.
  • Плохое освещение на улицах города приводит к росту несчастных случаев.
  • Повышение напряжения ведёт к резкому уменьшению срока службы лампочек, иногда вдвое, а то и в три раза.
  • Бытовые нагревательные приборы (плитки, утюги и т. п.), рассчитанные на паспортную мощность, при снижении напряжения дольше нагреваются. И поэтому получается перерасход электроэнергии на бытовые нужды.

Вот, что такое стабилизатор напряжения и зачем он нужен.

Подведём небольшой итог

Ценными качествами регуляторов являются быстрая реакция прибора на изменение параметров в сети, расширенный диапазон рабочего напряжения, хорошая перегрузочная способность, синусоида правильной формы на выходе, бесшумность.

Но сколько бы ни говорилось о достоинствах той или иной марки, для потребителя наиболее приоритетной характеристикой всегда остаётся соотношение цены и качества. Поэтому золотой серединой, несомненно, станет выбор качественной отечественной продукции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *