На 1 киловатт сколько микрофарад: Сколько микрофарад на 1 киловатт

Содержание

Сколько микрофарад на 1 киловатт

К любой kloundead Обязательно ли подключать к обмотке к которой подводится фаза? Можно подключить к нулю, тогда двигатель будет вращаться в другую сторону. Таким образом, меняя подключение к нулю или фазе, обеспечивают реверс двигателя. У вас показана одна схема, где вторая? При подключении трехфазного двигателя на частота вращения не меняется. А вот мощность падает, при чем в вашем случае практически вдвое.


Поиск данных по Вашему запросу:

Сколько микрофарад на 1 киловатт

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Люстра с пультом достала. О чём все молчат. 3 способа управления люстрой.
  • Калькулятор расчета емкости рабочего и пускового конденсаторов
  • Расчет емкости конденсатора
  • как подключить двигатель 4квт к сети 220 в
  • Помогите рассчитать конденсаторы на асинхронный двигатель 3-х ф. 1,7 квт 2850 об/мин
  • Трёхфазный двигатель — в однофазную сеть
  • Расчет емкости конденсатора
  • Господа электрики, подскажи по связке мотор 3фазы+конденсатор
  • Сколько микрофарад на 1 киловатт таблица

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Пусковые конденсаторы. Как подобрать и подключить.

Люстра с пультом достала. О чём все молчат. 3 способа управления люстрой.


Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле: Срабоч. Если запуск трехфазного двигателя проходит без нагрузки, то пусковую емкость можно не ставить. Что касается номинального напряжения устанавливаемых конденсаторов, оно должно быть 1.

Таким образом применять можно конденсаторы с рабочим напряжением не менее вольт не ниже, лучше конечно на вольт. Исходя из практики принимается следующее решение, при выборе пускового и рабочего конденсаторов исходить надо из следующего: на один киловатт мощности двигателя надо брать мкф на пусковой конденсатор и мкф на рабочий. В вашем случае Сраб. Вам достаточно будет мкф на работу и мкф на запуск. Если нагрузка на двигатель будет незначительная, то в процессе работы можно уменьшить емкость рабочего конденсатора до 50 мкф.

Если не найдете подходящие бумажные конденсаторы такой емкости можно использовать и электролитические схема ниже , главное правильно их подключить, при неправильной сборке они могут закипеть и взорваться!!!!! Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения например, трехфазный двигатель к однофазной сети? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию сверлильному или наждачному станку и пр.

В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать. Конденсатор состоит из двух пластин, расположенных друг напротив друга.

Между ними помещается диэлектрик. Его задача — снимать поляризацию, то есть заряд близкорасположенных проводников. Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.

Еще один вариант расчета — принять во внимание значение мощности двигателя. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель. В случае, когда пуск двигателя производится под нагрузкой, то есть его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой.

Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость — в 2, раза больше рабочего конденсатора.

Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно. Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на вольт.

Однако если в трехфазном двигателе момент подключения задается конструктивно расположение обмоток, смещение фаз трехфазной сети , то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка.

Смещение ее фазы тока осуществляется при помощи конденсатора. Если вы размышляете: как подобрать конденсатор к электродвигателю в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего.

В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от В. Как выбрать конденсатор для электродвигателя — вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки. У меня мотор 3квт,оборотов. Какой емкости надо пусковой конденсатор и рабочий для нормальной работы двигателя.

Двигатель хочу использовать на пиле- циркулярке для распилки дров разного диаметра. Спасибо, с уважением Олег Викторович. Например ,если у вас система передачи крутящего момента от вала двигателя к циркулярной пиле идет с помощью плоского ремня или клинообразного и натяжение его осуществляется весом двигателя двигатель крепится на пластине с одной стороны закрепленной к станине циркулярной пилы и в момент старта вы просто приподнимаете пластину с двигателем сняв нагрузку с оси двигателя а по мере набора мощности опускаете ее и подключаете саму пилу.

Что бы получить близкую к номинальной пусковую мощность устанавливают как обычно емкость пускового конденсатора в два три раза больше чем рабочая емкость. Если не найдете подходящие бумажные конденсаторы такой емкости можно использовать и электролитические схема ниже , главное правильно их подключить, при неправильной сборке они могугт закипеть и взорваться!!!!! Можно прибавить через кнопку электролит на , для запуска.

Кнопку надавил, движок начал крутиться — отпустил. Учись правильно задавать вопросы, а то здесь такого начитаешься, что забудешь что и спрашивал. А сколько нужно литров на 1 час? Ваш вопрос без уточнения конкретики столь же бессмысленный, как и приведённый мной пример. Емкость делится на : пусковую и рабочую. Все зависит от того что будет крутить Ваш движок. Eng Ru. Нормативно-техническая документация.

Производственно-технологическая документация. Комплексное проектирование. Конструкторская документация. Ландшафтный дизайн. Монтажный инжиниринг. Главная Разное На один киловатт сколько микрофарад. Нормативно-техническая документация Производственно-технологическая документация Комплексное проектирование Конструкторская документация Ландшафтный дизайн Монтажный инжиниринг. Главная Разное На один киловатт сколько микрофарад Какой нужен рабочий и пусковой конденсатор для двигателя 1. Что такое конденсатор Конденсатор состоит из двух пластин, расположенных друг напротив друга.

Существует три вида конденсаторов: Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, так как вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание. Работают в любом включении, так как их обкладки одинаково взаимодействуют с диэлектриком и с источником.

Электролитические оксидные. В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, так как имеют максимально возможную емкость до мкФ. Как подобрать конденсатор для трехфазного электродвигателя Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ. Как подобрать конденсатор для однофазного электродвигателя Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на вольт. Итак, как подобрать конденсатор для однофазного электродвигателя? Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя. Яндекс под носом, ищи На Вт — 7мкф.

Нечего страшного?


Калькулятор расчета емкости рабочего и пускового конденсаторов

Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т. Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1. Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:.

Для пуска двигателя мощностью 2,2 кВт, оборотами в минуту .. сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ.

Расчет емкости конденсатора

Если двигатель маломощный, то вы можете просто не увидеть разницу в показаниях. Считал по формулам, получилось мкф почему-то, а исходя из 6. Подключил этот амперметр, а он дергается при запуске, а при работе показывает 0, мерил цифровым мультиметром, он тоже 0. Как подключен звезда или треугольник? Вот вы и не увидили на вашем амперметре. А мультиметр скорее всего для постоянки. Здравствуйте Александр У меня к вам вопрос. Мне нужно подключить асинхронный двигатель 4 квт на вольт, имеется пусковая и рабочая обмотки, сколько нужно емкости конденсаторов для пуска и для работы. Для начала посмотрите моё видео о том как определить тип двигателя, затем, если он у вас однофазный то посмотрите как подключаются однофазные двигателя.

как подключить двигатель 4квт к сети 220 в

Рабочие конденсаторы 5шт. Скажите чего не хватает??? Но даже и на звезде на холостую и не большую нагрузку должен работать. Или ошиблись в коммутации или шток на циркулярке заедает когда ремень натягиваете.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый пусковой конденсатор 2, который необходим для увеличения пускового момента.

Помогите рассчитать конденсаторы на асинхронный двигатель 3-х ф. 1,7 квт 2850 об/мин

Есть старое точило работающее на 3х фазном асинхроннике,75 квт. Раньше все это работало так-крутанул рукой, включил-крутится. Решил переделать более цивильно и воткнуть конденсатор. С такой системой знаком по сверлилке своей. Туда на 0,55 квт мотор прицепил 30 мкф конденсатор и все окей.

Трёхфазный двигатель — в однофазную сеть

В домашнем хозяйстве или гараже иногда требуется подключить к однофазной проводке на Вольт электрический двигатель, рассчитанный на работу от 3-х фазной сети. Но так стоит делать только, если нет возможности подключения к трех фазной электросети, потому что в ней сразу создается вращающееся магнитное поле, необходимое для создания условий вращения ротора в статоре. К тому же достигается в этом режиме максимальная эффективность и мощность работы электродвигателя. При подключении к бытовой однофазной электросети подключайте три обмотки по схеме треугольника, что бы добиться наибольшей выходной мощности электромотора максимум 70 процентов по сравнению с 3 фазным подключением. При однофазном подключении на 2 выхода подключается фаза и ноль, а отсутствие третьей фазы компенсируется конденсатором. Направление вращения электродвигателя зависит от того, как подключить третий контакт через конденсатор- к фазе или к нулю. Для того что бы подключить маломощные электродвигатели до 1. Один его конец подключается к нулю, а второй к третьему выходу треугольника.

Кондеров из расчета 66 мкф на 1 квт если запуск без механической Запускал на сколько помню звездой 2,2 квт об/мин на общей.

Расчет емкости конденсатора

Сколько микрофарад на 1 киловатт

Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле: Срабоч. Если запуск трехфазного двигателя проходит без нагрузки, то пусковую емкость можно не ставить. Что касается номинального напряжения устанавливаемых конденсаторов, оно должно быть 1.

Господа электрики, подскажи по связке мотор 3фазы+конденсатор

ВИДЕО ПО ТЕМЕ: Расчет пускового конденсатора. Переключение двигателя с 380В на 220В

Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле: Срабоч. Если запуск трехфазного двигателя проходит без нагрузки, то пусковую емкость можно не ставить. Что касается номинального напряжения устанавливаемых конденсаторов, оно должно быть 1. Таким образом применять можно конденсаторы с рабочим напряжением не менее вольт не ниже, лучше конечно на вольт.

Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле: Срабоч.

Сколько микрофарад на 1 киловатт таблица

Надо подключить 4 кВТ в однофазную сеть! Кто и что может сказать или дать схемки? Искал по сайтам кое что есть но как- то криво все! То емкость не скажут какую то резистор на нарисують! Отт халявщики! И не лень тащить было? По существу: существуют однофазные аналоги.

При подключении асинхронного трехфазного электродвигателя на В в однофазную сеть на В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи. На картинке внизу статьи вы увидите обе эти схемы подключения.


Сколько нужно микрофарад на 1 квт двигателя?

Исходя из практики принимается следующее решение, при выборе пускового и рабочего конденсаторов исходить надо из следующего: на один киловатт мощности двигателя надо брать 200 мкф на пусковой конденсатор и 100 мкф на рабочий.18 нояб. 2020 г.

Часто задаваемые вопросы:

Как включить горячий воздух на кондиционере?

Как включить горячий воздух на кондиционере?Как включить кондиционер на теплоВключаем кондиционер с помощью кнопки включения. И ждем, пока не откроются жалюзи и не начнет вращаться внутренний вентилятор.После этого вы нажимаете несколько раз кнопку переключения режимов. Жмете до тех пор, пока на экране пульта не появится изображение солнышка или слово «heat».3 дек. 2020 г.

Подробнее

Можно ли выводить вытяжку в вентиляцию РБ?

Можно ли выводить вытяжку в вентиляцию РБ?Не допускается заклеивать вытяжные вентиляционные отверстия и уменьшать их размеры, закрывать предметами обихода, так как это резко ухудшает циркуляцию воздуха в жилом помещении, приводит к его застою и образованию сырости на наружных стенах, особенно если они заставлены мебелью или завешены коврами.

Подробнее

Что такое процесс испарения?

Что такое процесс испарения?Испаре?ние — процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества.

Подробнее

Какой нужен конденсатор для 3 квт двигателя?

Какой нужен конденсатор для 3 квт двигателя?Общая ёмкость рабочего и пускового конденсаторов должна рассчитываться так: 1 мкФ на 100 Вт мощности. В этом случае рабочий конденсатор остаётся включённым во время работы электродвигателя.15 нояб. 2020 г.

Подробнее

Почему кондиционер работает?

Почему кондиционер работает?Как работает кондиционер Воздух в помещении охлаждается, проходя через теплообменник внутреннего блока, в котором испаряется хладагент. … Холодный фреон поступает в теплообменник внутреннего блока (испаритель), где за счет теплообмена с воздухом из помещения он закипает и переходит из жидкого состояния в газообразное.

Подробнее

Как называется прибор для защиты дыхания?

Как называется прибор для защиты дыхания?Средства защиты органов дыхания (противогазы, респираторы, СИЗОД, самоспасатели и т.

Подробнее

Зачем нужно заправлять кондиционер фреоном?

Зачем нужно заправлять кондиционер фреоном?Заправка фреоном – обязательный элемент обслуживания кондиционеров В процессе работы сплит-системы происходит естественная утечка фреона. Она связана с тем, что соединения трубопровода, который объединяет блоки кондиционера, выполняются путем развальцовки. Нормальная ежегодная потеря хладагента составляет около 7%.

Подробнее

Нужно ли разрешение на установку вытяжки?

Нужно ли разрешение на установку вытяжки?Есть ли у жильцов дома основания препятствовать монтажу воздуховода? Безусловно есть! Согласно Жилищному кодексу РФ эксплуатация общедомового имущества (а наружные стены здания относятся к общедомовому имуществу) должна осуществляться с разрешения (согласия) большинства собственников помещений.

Подробнее

Как ломается кондиционер?

Как ломается кондиционер?Наиболее частой причиной выхода из строя кондиционера является неполное испарение хладагента в испарителе. В этом случае в испарителе остается жидкий фреон, который подается в компрессор. Так как жидкость является несжимаемой, компрессор начинает работать в экстремальном режиме, приводящем к очень быстрой поломке.

Подробнее

Как работает датчик влажности воздуха?

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы. … Он способен измерять влажность независимо от температуры окружающей среды.

Куда нельзя ставить микроволновую печь?

Нельзя устанавливать микроволновку вблизи источников высоких температур и пара. Следовательно, не стоит ставить печь возле духовки или плиты. Для обеспечения правильного теплообмена и вентиляции устанавливать СВЧ печь можно на расстоянии не менее 8 см. от боковых стенок и 10 см.1 мар. 2019 г.

Кто отвечает за состояние вентиляцию в многоквартирном доме?

За обслуживание вентиляции в многоквартирном доме отвечает управляющая компания или тсж, так как дымовые и вентиляционные каналы относятся к общедомовому имуществу. Управляющая организация или тсж должны проводить ревизию вентиляционных каналов самостоятельно или с привлечением специализированной организации.

Какие экологические проблемы существуют в Казахстане?

«В стране есть две наиболее острые экологические проблемы – это качество окружающей среды (воздух, вода, почва) и твердые бытовые отходы», — сказал Магзум Мирзагалиев, презентуя проект нового Экологического кодекса в Мажилисе.3 февр. 2020 г.

Трёхфазный двигатель — в однофазную сеть

Автор Светозар Тюменский На чтение 3 мин. Просмотров 32.4k. Опубликовано

10 марта Обновлено

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения ~ 380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены «треугольником» (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть ~ 220 в.

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже –  вместо клеммных колодок, в коробке может располагаться два разделённых  пучка проводов (по три в каждом).

Эти пучки проводов представляют собой «начала» и «концы» обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме «треугольник» – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему «треугольник» добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку «ПУСК», применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее — напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при «разгоне» двигателя.

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

Рассчитать ёмкость рабочего конденсатора можно формулой:

  • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток «треугольник».
  • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток «звезда».

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном — номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового — она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические — типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

Содержание

  1. Как подключить трёхфазный двигатель к однофазной сети.
  2. подключение двигателя 380 на 220 вольт
  3. правильный подбор конденсаторов для электродвигателя

Как подключить трёхфазный двигатель к однофазной сети.


подключение двигателя 380 на 220 вольт


правильный подбор конденсаторов для электродвигателя


Как найти емкость конденсатора в кВАр и фарадах для коррекции коэффициента мощности

Как найти емкость батареи конденсаторов нужного размера в кварах и микрофарадах для коррекции коэффициента мощности – 3 метода

Поскольку мы получили множество писем и сообщений от аудитории сделайте пошаговое руководство, показывающее, как рассчитать правильный размер конденсаторной батареи в кВАр и микрофарадах для коррекции и улучшения коэффициента мощности как в однофазных, так и в трехфазных цепях.

В этой статье показано, как найти конденсаторную батарею нужного размера как в микрофарадах, так и в кварах, чтобы улучшить существующую «т.е. отставание» П.Ф. от целевого «т.е. желаемый», поскольку скорректированный коэффициент мощности имеет множество преимуществ. Ниже мы показали три различных метода с решенными примерами для определения точного значения емкости конденсатора для коррекции коэффициента мощности.

 

Теперь давайте начнем и рассмотрим следующие примеры…

Содержание

Как рассчитать номинал конденсатора в кВАр?

Пример: 1

Трехфазный асинхронный двигатель мощностью 5 кВт имеет коэффициент мощности, равный 0,75. Какой размер конденсатора в кВАр требуется для повышения коэффициента мощности до 0,90?

Решение №1 (простой метод с использованием табличного множителя)

Моторный вход = 5 кВт

Из таблицы, множитель для улучшения PF с 0,75 до 0,90 составляет 0,398

Требуемый конденсатор KVAR для улучшения P. F с 0,75 до 0,90

Требуется конденсатор KVAR = кВт x Таблица 1 0,75 и 0,90

4. = 5 кВт x 0,398

= 1,99 KVAR

и рейтинг конденсаторов, подключенных на каждой фазе

= 1,99 кВар / 3

= 0,663 KVAR

Решение № 2 (классический расчет)

Расчет.0018

Вход двигателя = P = 5 кВт

Оригинал P.F = COSθ 1 = 0,75

Окончательный P.F = COSθ 2 = 0,90

θ 1 = COS -1 = (0,75) = 41 = 41 = 41 = COS -1 = (0,75) = 41 °.41; Tan θ 1 = Tan (41°,41) = 0,8819

θ 2 = Cos -1 = (0,90) = 25°,84; Tan θ 2 = Tan (25°,50) = 0,4843

Требуемая мощность конденсатора в кВАр для улучшения коэффициента мощности с 0,75 до 0,90

Требуемая мощность конденсатора в квар = P (Tan θ 1 – Tan θ 2 )

= 5kW (0. 8819 – 0.4843)

= 1.99 kVAR

And Rating of Capacitors connected in each Phase

1.99 kVAR / 3 = 0.663 kVAR

Note: Таблицы размеров конденсаторов в кВАр и микрофарадах для коррекции коэффициента мощности

Следующие таблицы (приведенные в конце этого поста) были подготовлены для упрощения расчета кВАр для улучшения коэффициента мощности. Емкость конденсатора в кВАр – это кВт, умноженная на коэффициент в таблице, чтобы улучшить существующий коэффициент мощности до предлагаемого коэффициента мощности. Проверьте другие решенные примеры ниже.

Пример 2:

Генератор питает нагрузку 650 кВт при коэффициенте мощности 0,65. Какой размер конденсатора в кВАр требуется, чтобы поднять PF (коэффициент мощности) до единицы (1)? И сколько еще кВт может дать генератор при той же нагрузке в кВА при улучшении коэффициента мощности.

Решение №1 (метод простой таблицы с использованием таблицы Multiple )

Подача кВт = 650 кВт

Из таблицы 1 множитель для повышения коэффициента мощности с 0,65 до единицы (1) равен 1,169

Требуемая емкость конденсатора кВАр для повышения коэффициента мощности с 0,65 до единицы (1).

Требуемая мощность конденсатора кВАр = кВт x Таблица 1 Множитель 0,65 и 1,0 . .or

кВА = кВт / Cosθ

= 650/0,65 = 1000 кВА

Когда коэффициент мощности увеличен до единицы (1)

Количество кВт = кВА x Cosθ

= 1000 x 1 = 1000 кВт

Следовательно, повышенная мощность, поставляемое генератором

1000 кВт — 650 кВт = 350 кВт

Решение № 2 (Классический метод расчета). 1 = 0,65

Окончательный P.F = Cosθ 2 = 1

θ 1 = Cos -1 = (0,65) = 49°,45; Tan θ 1 = Tan (41°,24) = 1,169

θ 2 = Cos -1 = (1) = 0°; Tan θ 2 = TAN (0 °) = 0

Требуемый конденсатор KVAR для улучшения P.F с 0,75 до 0,90

Требуемый конденсатор KVAR = P (TAN θ 1 — TAN θ 2 )

= 650KW (TAN θ 2 )

= 650KW (TAN θ 2 ) 1,169– 0)

= 759,85 квар

Как рассчитать емкость конденсатора в микрофарадах и кВАр?

Следующие методы показывают, что как определить требуемое значение конденсаторной батареи как в кВАр, так и в микрофарадах . Кроме того, решенные примеры также показывают, что как преобразовать емкость конденсатора в микрофарадах в кВАр и кВАР в микрофарадах для П.Ф. Таким образом, конденсаторная батарея нужного размера может быть установлена ​​параллельно каждой стороне фазной нагрузки для получения целевого коэффициента мощности.

Пример: 3

Однофазный двигатель 500 В, 60 c/s потребляет ток полной нагрузки 50 А при отставании P.F 0,86. Коэффициент мощности двигателя необходимо улучшить до 0,94, подключив к нему батарею конденсаторов. Рассчитайте требуемую емкость конденсатора как в кварах, так и в мкФ?

Решение:

(1), чтобы найти необходимую емкость емкости в KVAR, чтобы улучшить P.F с 0,86 до 0,94 (два метода)

Решение № 1 (метод таблицы)

Мотор. Вход = P = V X I X COSθ

= 500V x 50a x 0,86

= 21,5 кВт

Из таблицы, множитель для улучшения PF с 0,86 до 0,94 — 0,230

Требуемый конденсатор KVAR для улучшения P. FF до 0,9.4

Требуемый конденсатор KVAR = кВт x Таблица Умнолизатор 0,86 и 0,94

= 21,5 кВт x 0,230

= 4,9 KVAR

Раствор № 2 (метод расчета)

Мотористический вход = P = V X I X Cosθ

= 500V x 50a x 0,86

= 21,5 кВт

Фактические или существующие P.F = cosθ 1 = 0,86

или цель P.F = cosθ 2 = 0,94

0004 θ 1 = Cos -1 = (0,86) = 30,68°; Tan θ 1 = Tan (30,68°) = 0,593

θ 2 = Cos -1 = (0,95) = 19,94°; Tan θ 2 = TAN (19,94 °) = 0,363

Требуемый конденсатор KVAR для улучшения P.F с 0,86 до 0,95

Требуется конденсатор KVAR = P в KW (TAN θ 1 — TAN θ 2 )

1 — TAN θ 2 ) 21,5кВт (0,593 – 0,363)

= 4,954 квар

(2) Найти требуемую емкость емкости в фарадах для улучшения КМ с 0,86 до 0,97 (два метода)

Решение №1 (табличный метод)

Мы уже рассчитали требуемую емкость конденсатора в кВАр, поэтому мы можем легко преобразовать ее в фарады, используя эту простую формулу

Требуемая емкость конденсатора в фарадах/микрофарадах

  • C = кВАр / (2π x f x В 2 ) в фарадах
  • C = кВАр x 10 9  / (2π x f x  V 2 ) в микрофарадах

Установка значений в вышеуказанную формулу

= (4,954 квар) / (2 x π x 60 Гц x 500 2 В)

= 52,56 мкл

Раствор # 2 (метод расчета)

9 квар = 4,954 … (i)

Мы это знаем;

I C = V / X C

Тогда как X C = 1/2π x f x C

I C = V / (1/2π x f x C)

I C = V x 2π x f x C

x 0 (500 В) ) x C

I C = 188495,5 x C

И,

квар = (V x I C ) / 1000 … [кВАр = (V x I) / 1000] 5,9 x 10004 5 84 5 9000 C

I C = 94247750 x C … (ii)

Приравнивая уравнения (i) и (ii), получаем

94247750 x C = 4,954 Kvar x C

C = 4,954 KVAR / 94247750

C = 78,2 мкл

Пример 4

. Какое значение кандидативности должно быть подключено в параллельном плане с чертежом нагрузки 1KW на 70%. источник 208 В, 60 Гц, чтобы повысить общий коэффициент мощности до 91%.

Решение:

Вы можете использовать табличный метод или метод простого расчета, чтобы найти требуемое значение емкости в фарадах или кВАр для улучшения коэффициента мощности с 0,71 до 0,9.7. Итак, в данном случае мы использовали табличный метод.

P = 1000W

Фактический коэффициент мощности = COSθ 1 = 0,71

Желаемый коэффициент мощности = COSθ 2 = 0,97

Из таблицы, множитель, чтобы улучшить PF с 0,71 до 0,97. улучшить коэффициент мощности с 0,71 до 0,97

Требуемая мощность конденсатора кВАр = кВт x Табличный множитель 0,71 и 0,970018 (Требуемое значение емкости в KVAR)

Ток в конденсаторе =

I C = Q C / V

= 741KVAR / 208 В

= 3,56A

и

x

C

= 3,56A

и

x

C

= 3,56a

и

9000. / I C

= 208V / 3,76 = 58,42 Ом

C = 1 / (2π x F x x C )

C = 1 (2π x 60HZ x 58,42 Ом)

C =. 45,4 мкФ (требуемое значение емкости в фарадах)

Конденсатор кВАр в мкФ и мкФ в квар Преобразование

Следующие формулы используются для расчета и преобразования конденсатора квар в фарад и наоборот.

Требуемый конденсатор в кВАр

Преобразование фарад и микрофарад конденсатора в ВАр, кВАр и МВАР.

  • VAR = C X 2π x F x V 2 X 10 -6 … VAR
  • ВАр = C в мкФ  x f   x  В 2  / (159,155  x  10 3 )          …     в VAR

    9

    8

  • Kvar = C x x F x V 2 x 10 -9 … В KVAR
  • KVAR = C в μF x F x V 2 ÷ (159,155 x 10 6 )… В KVAR
  • MVAR = C x x F x V 2 x 10 -12 … В MVAR
  • MVAR = C в μF x F x V 2 ÷ (159,155 x 10 )… В MVAR

Требуемый конденсатор в фарадах/микрофарадах.

Преобразовать кВАр конденсатора в фарады и микрофарады

  • C = KVAR X 10 3 /2π x F x V 2 … В FARAD
  • C = 159,155  x  Q в кВАр /  f x  В 2                              , в фарадах
  • C = KVAR x 10 / (2π x F x V 2 ) … В микрофараде 2 ) … В микрофараде
  • C = 159,155 x 10 6 x Q в Kvar / F x V 2 … В Microfarad

Где:

  • C = емкость в микрофарадах
  • Q = реактивная мощность в вольт-амперах-реактивных
  • f = частота в герцах
  • В = напряжение в вольтах

Полезно знать:

Ниже приведены важные электрические формулы, используемые при расчете улучшения коэффициента мощности.

Активная мощность (P) в ваттах:

  • кВт = кВА x Cosθ
  • кВт = л.с. x 0,746 или (л.с. x 0,746) / КПД … (л.с. = мощность двигателя в л.с.)
  • кВт = √ ( кВА 2 – кВАр 2 )
  • кВт = P = V x I Cosθ … (однофазный)
  • кВт = P = √3x V x I Cosθ … (трехфазная линия к линии)
  • кВт = P = 3x V x I Cosθ … (три фазы между фазами)

Полная мощность (S), ВА:

  • кВА = √(кВт 2 + кВАр 2 )
  • кВА = кВт / Cosθ

Реактивная мощность (Q) в ВА:

  • кВАр = √(кВА 2 – кВт 2 )
  • кВАр = C x (2π x f x V 2 )

Коэффициент мощности (от 0,1 до 1)

  • Коэффициент мощности = Cosθ = P / V I … (однофазный)
  • Коэффициент мощности = Cosθ =  P / (√3x V x I) … (три фазы между фазами)
  • Коэффициент мощности = Cosθ = P / (3x V x I) … (трехфазная линия к нейтрали)
  • Коэффициент мощности = Cosθ = кВт / кВА … (как однофазный, так и трехфазный)
  • Коэффициент мощности = Cosθ = R/Z … (сопротивление / импеданс)

А

  • X C = 1 / (2π x f x C) … (X C = Емкостное реактивное сопротивление)
  • I C = V / X C … (I = V / R)

Related Posts:

  • Активная, реактивная, полная и комплексная мощность

Калькуляторы расчета конденсаторной батареи и коррекции коэффициента мощности

Если два вышеуказанных метода кажутся вам немного сложными (что, по крайней мере, не должно), вы можете использовать следующие онлайн-калькуляторы коэффициента мощности, кВАР и микрофарад, разработанные нашей командой для вас. .

  • Калькулятор мкФарад в кВАр
  • Калькулятор
  • кВАр в Фарада
  • Блок конденсаторов в кВАр и мкФ Калькулятор
  • Калькулятор коррекции коэффициента мощности — как найти конденсатор PF в мкФ и квар?
  • Как преобразовать мкФ конденсатора в кВАр и наоборот? Для исправления PF

Таблица размеров конденсаторов и таблица для коррекции коэффициента мощности

Следующая таблица коррекции коэффициента мощности может быть использована для легкого выбора правильного размера конденсаторной батареи для желаемого улучшения коэффициента мощности. Например, если вам нужно улучшить существующий коэффициент мощности с 0,6 до 0,98, просто посмотрите на множитель для обеих цифр в таблице, который равен 1,030. Умножьте это число на существующую активную мощность в кВт. Вы можете найти реальную мощность, умножив напряжение на ток и существующий отстающий коэффициент мощности, т.е. P в ваттах = напряжение в вольтах x ток в амперах x Cosθ 1 . Таким простым способом вы найдете требуемое значение емкости в кВАр, необходимое для получения желаемого коэффициента мощности.

Таблица – от 0,01 до 0,25Таблица – от 0,26 до 0,50Таблица – от 0,51 до 0,75Таблица – от 0,76 до 1,0

Вся таблица – от 0,10 до 1,0 (Щелкните изображение, чтобы увеличить)

Похожие сообщения

  • Методы улучшения коэффициента мощности с их преимуществами и недостатками
  • Как рассчитать номинал резистора для светодиодов (с разными типами цепей светодиодов)
  • Как рассчитать мощность трансформатора в кВА (1-фазная и 3-фазная)?
  • Как рассчитать счет за электроэнергию. Простое объяснение с помощью калькулятора
  • Как найти подходящий размер кабеля и провода для установки электропроводки (SI и метрическая система)
  • Как найти правильный размер автоматического выключателя? Калькулятор выключателя и примеры

ПРОБЛЕМЫ РАЗМЕРА КОНДЕНСАТОРОВ

ДИЛЕММЫ РАЗМЕРА КОНДЕНСАТОРОВ

ЦЕЛЬ:
Чтобы понять важность выбора правильного размера конденсатора.
ЗАДАЧИ:
Учащийся сможет:
1) Понять, что такое конденсаторы и как они работают
2) Продемонстрировать влияние неправильного размера конденсатора на энергопотребление
3) Продемонстрировать умение тестировать конденсаторы 908:45
УРОК / ИНФОРМАЦИЯ:
Самый простой способ объяснить механику конденсатора — сравнить его с батареей. Оба хранят и выделяют электричество. Конденсаторы заряжаются электричеством, а затем высвобождают накопленную энергию со скоростью шестьдесят раз в секунду в системе переменного тока с частотой 60 циклов. Размер имеет решающее значение для эффективности двигателя, так же как размер батарей имеет решающее значение для радио. Радио, для которого требуется батарея на 9 В, не будет работать с батареей на 1,5 В. Таким образом, по мере разрядки батареи радио не будет воспроизводиться должным образом. Двигатель, для которого требуется конденсатор 7,5 мФд, не будет работать с конденсатором 4,0 мФд. Точно так же двигатель не будет работать должным образом со слабым конденсатором. Это не означает, что чем больше, тем лучше, потому что слишком большой конденсатор может привести к увеличению потребления энергии. В обоих случаях, будь он слишком большим или слишком маленьким, срок службы двигателя будет сокращен из-за перегрева обмоток двигателя. Производители двигателей тратят много часов на испытания комбинаций двигателей и конденсаторов, чтобы получить наиболее эффективную комбинацию. При замене пусковых конденсаторов допускается максимальное отклонение +10% в микрофарадах, но точные рабочие конденсаторы должны быть заменены. Номинальное напряжение всегда должно быть таким же или выше, чем у исходного конденсатора, независимо от того, является ли он пусковым или рабочим конденсатором. Всегда консультируйтесь с производителями, чтобы проверить правильный размер конденсатора для конкретного применения.
Конденсаторы
содержат две металлические пластины, изолированные друг от друга (см. рис. 1). В открытом состоянии внутренняя часть выглядит как два листа фольги с вощеной бумагой между ними, плотно свернутые, как рулон бумажного полотенца. Несколько лет назад в маслонаполненных двигателях в качестве охлаждающей жидкости использовались печатные платы. Сегодня большинство конденсаторов сухого типа.
Рисунок 1
В электродвигателе используются два основных типа:
1) Рабочие конденсаторы рассчитаны на диапазон от 3 до 70 мкФ. Рабочие конденсаторы также классифицируются по классу напряжения. Классы напряжения: 370 В и 440 В. Конденсаторы номиналом выше 70 микрофарад (мкФ) являются пусковыми конденсаторами. Рабочие конденсаторы предназначены для непрерывной работы и находятся под напряжением все время, пока работает двигатель. Однофазным электродвигателям требуется конденсатор для питания второй фазной обмотки. Вот почему размер так важен. Если установлен неправильный рабочий конденсатор, магнитное поле двигателя будет неравномерным. Это заставит ротор колебаться в тех местах, которые неровны. Это колебание приведет к тому, что двигатель станет шумным, увеличит потребление энергии, приведет к падению производительности и вызовет перегрев двигателя. 908:45
2) Пусковые конденсаторы размещены в черном пластиковом корпусе и имеют диапазон mfd, в отличие от определенного номинала mfd на рабочих конденсаторах. Пусковые конденсаторы (номинальной емкостью 70 мкФ и выше) имеют три класса напряжения: 125 В, 250 В и 330 В. Примерами могут служить рабочий конденсатор 35 мФд при 370 В и 88-108 мФд при 250 В пусковой конденсатор. Пусковые конденсаторы увеличивают пусковой момент двигателя и позволяют быстро включать и выключать двигатель. Пусковые конденсаторы предназначены для мгновенного использования. Пусковые конденсаторы остаются под напряжением достаточно долго, чтобы быстро разогнать двигатель до 3/4 полной скорости, а затем отключаются от цепи. 908:45
Потенциальные реле также важны. Реле напряжения используются для электронного подключения и отключения пусковых конденсаторов от цепи двигателя (см. рис. 2). Каждое реле имеет определенное номинальное напряжение для включения пускового конденсатора последовательно с пусковой обмоткой и определенное напряжение для его вывода из цепи. Каждый рейтинг основан на электромагнитном поле, создаваемом вращением двигателя. Изготовитель двигателя изучает влияние установки и удаления конденсатора на увеличение пускового момента при как можно меньшем изгибе обмотки. Возможные реле имеют четыре номинала; (1) постоянное напряжение катушки, (2) минимальное напряжение срабатывания, (3) максимальное напряжение срабатывания и (4) падение напряжения. Реле напряжения трудно проверить, и его всегда следует заменять при замене пускового конденсатора. Точный размер, предназначенный для этого конкретного двигателя, должен быть переустановлен. Реле напряжения также необходимо заменить, если обнаружены разомкнутые контакты. 908:45
Рисунок 2
ДЕЯТЕЛЬНОСТЬ:
Продемонстрируйте использование стандартного вентилятора мощностью 1/2 л. с. от бытового обогревателя в следующих упражнениях. Во время каждого упражнения учащийся должен записывать уровень шума, скорость, температуру и силу тока двигателя.
ПРИ ВЫПОЛНЕНИИ ДАННЫХ ДЕЙСТВИЙ СЛЕДУЕТ БЫТЬ КРАЙНЕ ОСТОРОЖНЫ. СМОТРИТЕ ЗАМЕТКИ УЧИТЕЛЯ!
(1) Снимите конденсатор и попробуйте запустить двигатель. Обязательно изолируйте концы проводов. Это будет имитировать открытый конденсатор. 908:45
(2) Запустите двигатель с правильным конденсатором. Заблокируйте переднюю часть воздуходувки, чтобы получить правильную скорость двигателя и потребляемый ток.
(3) Закоротите два провода, которые обычно идут к конденсатору, и изолируйте соединение. Это будет имитировать закороченный конденсатор.
(4) Замените стандартный конденсатор конденсатором с половиной номинала mfd.
(5) Замените стандартный конденсатор на конденсатор с удвоенным номиналом.
ПРИМЕЧАНИЕ:
Перед началом упражнения обязательно создайте надлежащее статическое давление, чтобы получить номинальную силу тока пластины двигателя с правильным рабочим конденсатором.
Упражнение №1 Уровень шума Скорость Температура Сила тока




Упражнение №2 Уровень шума Скорость Температура Сила тока




Упражнение №3 Уровень шума Скорость Температура Сила тока




Упражнение №4 Уровень шума Скорость Температура Сила тока




Упражнение №5 Уровень шума Скорость Температура Сила тока




ПРИМЕЧАНИЯ ДЛЯ УЧИТЕЛЕЙ
Упражнение на предыдущей странице связано с высоким напряжением. Необходимо носить защитные очки и соблюдать крайнюю осторожность, чтобы предотвратить поражение электрическим током. При неправильном подключении конденсаторы могут взорваться и нанести серьезную травму. Рекомендуется, чтобы инструктор продемонстрировал упражнение, прежде чем разрешить его выполнение ученику. Преподаватель также должен проверить работу учащегося перед тестовым прогоном. 908:45
НОМЕР:
Современные системы охлаждения и кондиционирования воздуха . Goodheart-Willcox Co., Inc. С. Холланд, Иллинойс. 1988.

Комментарии или вопросы по адресу: [email protected]

Возврат в меню HVAC

Основные расчеты конденсаторов — инженерное мышление

Конденсаторы используются во многих цепях для различных целей, поэтому мы изучим некоторые основные расчеты конденсаторов для цепей постоянного тока.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube

Конденсаторы в цепях постоянного тока

Конденсаторы обычно выглядят так. У нас есть конденсатор электролитического и керамического типа. Электролитик поляризован, что означает, что одна сторона должна быть подключена к плюсу, а другая к минусу источника питания. Керамический тип, как правило, может быть подключен любым способом. На стороне электролитического конденсатора мы находим пунктирную линию, указывающую на отрицательную сторону, длинный вывод также указывает на положительную сторону нового конденсатора. Но они обычно обрезаются во время установки, поэтому не полагайтесь только на это. Эти два конденсатора представлены такими символами, обратите внимание, что поляризованный конденсатор имеет небольшой символ плюса, указывающий на положительную сторону.

При подключении к источнику постоянного тока напряжение батареи будет выталкивать электроны в конденсатор, поэтому конденсатор заряжается до того же напряжения, что и батарея. Конденсаторы заряжаются почти мгновенно при прямом подключении к батарее, но мы почти всегда используем резистор, это задержит время зарядки, и позже в этой статье мы увидим, как это рассчитать.

Внутри конденсатора с одной стороны скопилось много электронов, которые не могут двигаться из-за изолирующего материала между двумя сторонами. Поскольку электроны заряжены отрицательно, у нас есть накопление заряда на одной стороне по сравнению с другой, поэтому у нас есть разница в напряжении между двумя выводами.

Эти электроны удерживаются на месте, и конденсатор может удерживать этот заряд в течение длительного периода времени. Когда указан путь, они будут разряжаться, пока не опустеют. Электроны не проходят через конденсатор; они просто накапливаются внутри, а затем высвобождаются.

Количество заряда, накопленного в конденсаторе, рассчитывается по формуле Заряд = емкость (в фарадах), умноженная на напряжение. Итак, для этого конденсатора 12 В 100 мкФ микрофарад мы конвертируем микрофарады в фарады (100/1 000 000 = 0,0001 Ф). Затем умножаем это на 12 В, чтобы увидеть, что он хранит заряд 0,0012 кулонов. 92
= 0,5 x 0,0001F x 144
= 0,0072 Дж

Мы знаем, что конденсатор будет заряжаться до напряжения батареи. Итак, если мы подключим конденсатор таким образом, каково будет напряжение на конденсаторе? Будет 1,5В. Если мы вот так подключим конденсатор, каково будет его напряжение? Тоже будет 1,5В. Это два разных способа соединения конденсаторов в цепях, последовательное или параллельное. Это приведет к тому, что конденсаторы будут работать по-разному.

Параллельные конденсаторы

Если мы поставили конденсатор параллельно с лампой, то при извлечении батарейки конденсатор начнет питать лампу, она медленно тускнеет по мере разрядки конденсатора. Если бы мы использовали два конденсатора, мы могли бы питать лампу дольше.

Допустим, конденсатор 1 = 10 мкФ, а конденсатор 2 = 220 мкФ. Как рассчитать общую емкость? Это очень просто, ответ 230 мкФ. Конденсаторы соединены параллельно. Итак, 10 мкФ + 220 мкФ = 230 мкФ. Мы можем продолжать добавлять больше, например, конденсатор на 100 мкФ, и общее количество будет просто суммой всех конденсаторов. Размещая их параллельно, мы, по сути, объединяем их, чтобы сформировать больший конденсатор. Это очень полезно, потому что, если, например, нам нужен большой конденсатор на 2000 мкФ, но у нас его нет, мы можем просто использовать конденсаторы меньшего размера, такие как 2x 1000 мкФ или 4x 500 мкФ и т. д. Он также часто используется для фильтрации шума и обеспечения большей емкости. ток в цепях с высоким потреблением.

Общий заряд, хранящийся в параллельных конденсаторах, равен: заряд = общая емкость, умноженная на напряжение. Итак, у нас есть батарея на 9 В и два конденсатора общей емкостью 230 мкФ. Поскольку это параллельно, этот провод 9 В, а этот 0 В, поэтому оба конденсатора заряжены до 9 В. Следовательно, 0,00023 Ф, умноженное на 9 В = 0,00207 кулона. И с тремя конденсаторами мы имеем 330 мкФ (0,00033 Ф), умноженные на 9 В = 0,00297 кулонов.

Мы также можем рассчитать заряд каждого конденсатора в отдельности. Мы просто используем одну и ту же формулу для каждого конденсатора, вы можете увидеть ответы на экране.
Конденсатор 1 = 0,00001 F x 9V = 0,00009 кулоны
Конденсатор 2 = 0,00022 F x 9V = 0,00198 кулоны
3 = 0,0001 F x 9V = 0,0009 Coulombs
. Если мы поместим конденсатор последовательно с лампой, когда мы нажмем переключатель, она загорится, но затем станет тусклее, когда конденсатор достигнет уровня напряжения батареи, и как только он достигнет этого, лампа погаснет. Помните, что электроны не могут проходить через конденсатор из-за изолирующего материала внутри. Электроны просто накапливаются внутри одной пластины и по мере их накопления отбрасывают такое же количество с противоположной пластины. Таким образом, ток может течь только тогда, когда конденсатор заряжается или разряжается. В настоящее время, когда батарея удалена, конденсатор не может разрядиться, поэтому он будет удерживать напряжение на том же уровне. Неважно, подключаем мы аккумулятор или отключаем, лампа не включится. Однако, если мы обеспечим другой путь, то при нажатии переключателя конденсатор теперь может разряжаться, так что электроны могут течь через лампу и освещать ее. Он станет тусклее по мере разрядки конденсатора.

Что, если бы у нас было 2 конденсатора, соединенных последовательно, опять же, конденсатор 1 имеет емкость 10 мкФ, а конденсатор 2 — 220 мкФ. Как найти полную емкость? Для этого мы используем эту формулу, она может показаться сложной, но на самом деле она очень проста. Все, что нам нужно сделать, это ввести значения наших конденсаторов 10 и 220 мкФ. Мы можем ввести это как это на наших калькуляторах или в Excel. Но при ручном вычислении мы делаем 1, деленное на 10, что равно 0,1, и 1, деленное на 220, что равно 0,00454. Мы складываем их вместе, чтобы получить 0,10454, а затем 1, деленное на это, дает в общей сложности 9.0,56 мкФ. Обратите внимание, что общая емкость теперь меньше конденсатора с наименьшим значением.

Если мы добавили в схему третий конденсатор на 100 мкФ, то получим общую емкость 8,73 мкФ. Значит, уменьшилось еще больше. Это потому, что, объединяя их последовательно, мы существенно увеличиваем толщину изоляционного материала, поэтому притяжение отрицательно заряженных электронов к положительно заряженным отверстиям на противоположной пластине становится слабее.

Общий заряд последовательных конденсаторов находится по формуле: заряд = емкость (в фарадах), умноженная на напряжение. Итак, если мы использовали 9V батареи, мы переводим микрофарады в фарады и видим, что общий заряд равен 0,00008604 кулонов
(0,00000956F x 9V = 0,00008604 кулонов)

Кулоны)

Заряд, удерживаемый каждым конденсатором в отдельности, очень легко рассчитать в последовательных цепях. Это то же самое, что общее количество. Каждый конденсатор содержит одинаковое количество электронов при последовательном соединении. Это потому, что когда мы заряжали конденсаторы, ток был одинаковым во всех частях цепи. То же самое количество электронов, которые были вытолкнуты в одну пластину, были вытеснены из противоположной пластины, поэтому каждый последовательный конденсатор может быть заряжен только до одного и того же уровня. Таким образом, наименьший конденсатор будет ограничивающим фактором.

Однако, поскольку каждый конденсатор может иметь разную емкость, напряжение каждого конденсатора будет разным. Напряжение каждого конденсатора находим по формуле напряжение = заряд (в кулонах) деленное на емкость (в фарадах).

Итак, для этой схемы мы видим, что конденсатор 1 на 7,8 В, конденсатор 2 на 0,35 В и конденсатор 3 на 0,78 В. Они объединяются в общее напряжение батареи, которое составляет 9 В.

Конденсатор 1: 0,00007857 C / 0,00001 F = 7,857 В
Конденсатор 2: 0,00007857 C / 0,00022 F = 0,357 В
Конденсатор 3: 0,00007857 C / 0,0001 F = 0,786 В
Общее напряжение = 7,857 В + 0,357 В + 0,786 В = 9 В

Время зарядки конденсатора переключатель все последовательно. Конденсатор полностью разряжен, и мы считываем 0 В на двух выводах.

Когда мы замыкаем переключатель, конденсатор заряжается. Напряжение будет увеличиваться до тех пор, пока не сравняется с напряжением батареи. Рост напряжения не мгновенный, он имеет экспоненциальную кривую. Сначала напряжение быстро увеличивается, а затем замедляется, пока не достигнет того же уровня напряжения, что и батарея.

Мы разделили эту кривую на 6 сегментов, но нас интересуют только первые 5, потому что на 5 маркере мы в основном находимся на полном напряжении, поэтому мы можем игнорировать все, что дальше этого. Каждый сегмент представляет нечто, называемое постоянной времени. Следовательно, поскольку у нас есть 5 сегментов, у нас есть 5 постоянных времени, поэтому потребуется 5 постоянных времени, чтобы зарядить конденсатор от 0 до чуть менее 100%. Все, что нам нужно сделать, это вычислить длину одной постоянной времени, а затем умножить ее на 5.

Чтобы вычислить одну постоянную времени, мы используем эту формулу.

Постоянная времени (в секундах) = сопротивление (в Омах), умноженное на емкость (в Фарадах). Итак, мы конвертируем значение нашего резистора в омы, а значение конденсатора в фарады и видим, что 10 000 Ом, умноженные на 0,0001 фарад, равняются 1. Итак, в этом примере постоянная времени равна 1 секунде. Следовательно, 5 из них — это 5 секунд. Это означает, что для полной зарядки этого конденсатора до 9 В требуется 5 секунд.

Если бы сопротивление резистора составляло всего 1000 Ом, постоянная времени была бы 0,1 секунды, поэтому для достижения

потребовалось бы 0,5 секунды.

V. Если бы конденсатор был 1000 микрофарад, это заняло бы всего 50 секунд. Таким образом, с увеличением размера конденсатора время, затрачиваемое на это, увеличивается. Если значение резистора увеличивается, время, необходимое для этого, также увеличивается.

Возвращаемся к нашей исходной схеме. Таким образом, мы можем рассчитать уровень напряжения для каждой постоянной времени. В точке 1 напряжение всегда равно 63,2 %, в точке 2 — 86,5 %, в точке 3 — 95 %, в точке 4 — 98,2 % и в точке 5 — 99,3 %.

Итак, в этом примере через 1 секунду напряжение конденсатора составляет 5,68 В, через 2 секунды — 7,78 В, через 3 секунды — 8,55 В, через 4 секунды — 8,83 В и через 5 секунд — 8,9 В.4V

Если вам нужен более точный ответ, мы можем рассчитать каждую точку следующим образом.

Точка 1 = 9В-0В)x0,632 = 5,6880В
Точка 2 = ((9В – 5,688В)x0,632)+5,68В = 7,7812В
Точка 3 = ((9В-7,7812В)x0,632 )+7,7812В = 8,5515В
Точка 4 = ((9В-8,55В)x0,632)+8,5515В = 8,8349В
Точка 5 = ((9В-8,8349В)x0,632)+8,8349В = 8,9393В

Помните, что при последовательном соединении ток в цепи уменьшается, а напряжение на конденсаторе увеличивается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *