На сколько поднимается зимой земля: Что такое морозное пучение и глубина промерзания грунта?
Что такое морозное пучение и глубина промерзания грунта?
Это понятия, смысл которых стоит понимать любому человеку, решившему самостоятельно возводить фундамент. Так же будет полезным для того, кто решил привлекать специалистов.
Морозное пучение
Морозное пучение — процесс превращения в лед воды, которая содержится в грунте. Всем известно, что вода, превращаясь в лед, увеличивается в объеме. Поскольку поздней осенью вода в грунте содержится в большом объёме из-за дождей и периодически выпадающего и оттаивающего снега, то, промерзая, верхний слой земли увеличивается в объеме (профессионально говорится «вспучивается»). Так как вспучивающемуся грунту необходимо куда то деваться, то он расширяется вверх.
В результате зимой поверхность земли приподнимается в среднем на 5–10 см, максимум может достигать в Московской области 15 см.
Первая неприятность состоит в том, что если фундамент расположен на поверхности грунта (т. е. не заглублен), грунт приподнимает фундамент, а вместе с ним все строение целиком. Главная проблема этой ситуации – неравномерность пучения под домом, то есть один угол фундамента может поднять на 5 см, а другой на 10 см. Почему? Здесь много факторов:
— один угол получает много солнечного света и тепла, а противоположный наоборот пребывает дольше в тени
— грунт под одним углом дома сильнее увлажняется, чем под другими углами в результате стока воды от дождей или из-за рельефа участка
Вслед за фундаментом деформируется всё строение.
В стенах из кладки образуются трещины (особенно заметно, если нет армопояса, а в доме из бруса не открываются или не закрываются двери и окна, начинаются течи или сквозняки). Весной, когда промерзший грунт оттаивает и лёд снова превращается в воду, поверхность грунта садится обратно, разумеется вместе с фундаментом и строением.
Вторая неприятность заключается в том, что весной, когда грунт оттает и сядет, поверхность земли не будет в точности копировать геометрию прошлого лета. А это означает, что фундамент и строение не займут уже никогда исходную форму и будут всегда существовать с некоторым искривлением, от года к году претерпевая новые деформации. Разумеется, этот процесс изнашивает постройку, существенно сокращая долговечность дома, доставляет неудобства при эксплуатации и проживании. Негативный результат от промерзания может появиться сразу первой зимой, но воздействие промерзания особенно заметно с течением длительного времени.
Но, есть немало примеров, когда лёгкие дома на незаглубленных фундаментах в Московской области не испытывают подобных проблем или испытывают их в приемлемой степени, и это не редкость. Дело в том, что степень пучения может быть разной и зависит от многих факторов, и да же может меняться от год от года. Поэтому, пучинистость грунта делится на 5 степеней:
- непучинистый,
- слабопучинистый,
- среднепучинистый,
- сильнопучинистый,
- чрезмернопучинистый.
Примерную степень пучения на участке может определить любой человек. К слабопучинистым относятся места на возвышенностях, с низким уровень грунтовых вод, и там где залегают песчаные (быстрофильтрующие воду) грунты. У чрезмернопучинистых всё наоборот – это места в низинах, там где есть обводненные, болотистые, водовмещающие глинистые грунты, когда вода стоит на штыке–двух лопаты круглый год. В завершение стоит сказать, что каждый участок может перемещаться в соседнуюю категорию по пучинистости в зависимости от погодных условий конкретного года. Чем меньше осадков было осенью, чем меньшее количество раз таял снег за осень и зиму – тем менее вспученным будет грунт. В таблице ниже вы сможете найти общие рекомендации по заглублению фундаментов в зависимости от типа грунта:
Ниже в таблице вы найдёте процент расширения грунта в зависимости от его типа (песчаные грунты в таблице не представлены, поскольку в большинстве случаев не являются пучинистыми)
Глубина промерзания грунта
Глубина промерзания грунта — это та глубина, на которую может промерзнуть грунт зимой. Эта глубина определяет границу, ниже которой рекомендуется располагать подошву фундамента (Подошва фундамента — это низ монолитной части без подбетонки) или «анкерные» элементы фундаментов (уширение свай ТИСЭ, лопасти винтовых свай и т.д.). Есть нормативная глубина промерзания, представленная на карте.
Но, фактическая глубина промерзания может быть значительно меньше или больше указанной на карте. Рассмотрим причины:
1. В первую очередь важна разновидность грунта, залегающего на участке. Ниже приведена таблица с глубиной промерзания различных типов грунтов, в частности для городов Московской области.
Появляется логичный вопрос – почему, принимается 140 см для Московской области, когда в таблице присутствуют куда большие значения? Дело в том, что глубоко промерзают именно песчаные грунты, которые пучинистыми не являются и не представляют для конструкции фундамента опасности. Песчаным грунтам свойственно быстро фильтровать воду, при том чем крупнее размер частиц (фракция), тем, как правило, быстрее происходит фильтрация. Поскольку из песчаных грунтов влага удаляется быстро, то и степень проявления пучения в них несущественна, а само промерзание проходит глубоко в результате открытых пор. Неприятной ситуацией может быть наличие водоупора под песком на глубине одного-двух метров, поскольку это может приводить к застаиванию влаги в верхней толще и к её вспучиванию; это ситуации-исключения.
В глинистых грунтах наоборот. Фильтрация воды очень медленная и в результате заполненных пор глубокого промерзания не происходит. В результате, к заморозкам поры глинистого грунта не успевают освободиться от воды, что приводит к значительному вспучиванию, которое может повредить фундамент постройку. Именно исходя из этих соображений принимается величина 140 см. Из глинистых грунтов стоит отдельно выделить грунты с консистенцией “Твёрдый”. Это водоупоры, грунты с очень плотной структурой, и они не насыщаются водой. Этим грунтам присуща низкая степень пучения и малое промерзание. К сожалению, в Московской области твёрдые глинистые грунты или крупные пески в верхней толще земли встречаются редко.
2. Помимо типа грунта на глубину промерзания так же влияют погодные условия конкретного года (температура зимой, толщина снежного покрова, количество выпавших осенью и зимой осадков).
3. Локация конкретного участка. Очевидно, что участкам в низинах, вблизи болот свойственно быть более влажными, чем участкам на холмах и вдали от водоёмов.
4. Профилактические мероприятия по снижению увлажнения и промерзания (о них будем говорить ниже).
Виды «противопучинистых» фундаментов и мероприятий.
Степень проявления морозного пучения необходимо учитывать при выборе типа фундамента. «Противопучинистыми» вариантами являются фундаменты по технологии ТИСЭ, винтовые сваи, заглубленные ленты с монолитной широкой подушкой (именно с подушкой, т.к. без неё лёгкие дома на ленте так же подвержены вспучиванию), монолитная плита расположенная ниже границы промерзания грунта.
Разумеется, уширения свай ТИСЭ, лопасти винтовых свай и монолитную полушку заглубленной ленты необходимо расположить ниже границы промерзания для придания им функции «якоря». К противопучинистым типам фундаментов не относятся столбчатые фундаменты без уширения, мелкозаглубленные ленты, плавающие плиты, а так же прямые заглубленные ленточные фундаменты без широкой монолитной подушки (на практике наша компания знает много случаев, когда стенки заглубленной ленты вспучившимся грунтом обжимаются настолько сильно, что грунт вслед за собой тащит вверх фундамент вместе с домом).
Способы защиты от морозного пучения.
Есть немало современных способов, позволяющих почти полностью, либо частично устранить воздействие морозного пучения.
1. Круглогодичное отопление строения. Не стоит путать с ситуацией, когда хозяева приезжают в дом пару раз за зиму. Речь идет о доме, в котором температура круглый год не падает ниже +15 градусов. В этом случае уместно рассмотреть плавающую плиту или мелкозаглубленную ленту. Суть метода в том, чтобы сперва возвести закрытый по периметру непродуваемый цоколь (фундамент без «щели»), а затем важно правильно утеплить его. Стоит утеплить два места:
— фундамент утепляется по наружному периметру, вертикально. В качестве материала чаще всего используется ЭППС (экструдированный пенополистирол), он бывает уже встроен в некоторые отделочные фундаментные панели. Толщину ЭППС следует принимать не менее 50 мм, а лучше 80 или 100 мм для Московского региона.
— необходимо утеплить отмостку. Для этого нужно в толще отмостки проложить ЭППС той же толщины, что и при утеплении фундамента. Ширина утепления в отмостке должна составлять не менее 1,2 метра (в идеале не менее глубины промерзания). Если данные рекомендации выполнены правильно, то пучение грунта под домом будет устранено как минимум на 80-90%, что является вполне достаточным.
Полученная система будет работать следующим образом: зимой часть тепла будет выходить из дома через нижнее перекрытие. Если цокольное пространство является замкнутым и потеря тепла через стены фундамента минимальна, то будет прогреваться земля под домом. Этого прогрева будет вполне достаточно, чтобы остановить промерзание и вспучивание. Утепление отмостки необходимо для того, чтобы избежать потерь тепла через промерзший грунт с наружной стороны фундамента (т.е., чтобы не отапливать грунт снаружи дома). Это не очень дорогой, но действенный метод. Главный его минус – зависимость от беспрерывного зимнего отопления.
2. Дренаж — это отдельная тема для статьи, но дренажи направленные на осушение участка и отведение воды от дома, являются одним из способов по снижению сил морозного пучения.
3. Ливневая система (ливневка). В данном разделе мы поговорим об отведении ливневой воды от дома комплексом водных стоков. Этот комплекс включает в себя водосточную систему, отмостку и ливневые желоба, идущие вдоль отмостки, и, уводящие ливневую воду от строения.
Если, отмостку делать нет средств, но у Вас есть правильное желание отводить от строения воду с кровли и стен, то Вы можете воспользоваться временным вариантом “скрытой” отмостки.
4. Армопояс (в каменном доме). Очень важный, но к сожалению многими не выполняемый элемент. Ранее уже было отмечено то, что при воздействии морозным пучением на строения со стенами из кладочных материалов (кирпич, блоки любых видов) в стенах образовываются трещины. Они могут иметь различную ширину раскрытия и приносить разную степень неудобства владельцам здания. Для предотвращения возникновения трещин требуется армопояс. Армопояс — это монолитная балка в теле стен, стягивающая все стены строения между собой как бандаж и тем самым препятствует появлению трещин. Выполняется армопояс как минимум по всему периметру, при этом неразрывно (это важно!). Если внутри строения есть несущие стены, то желательно сделать пояс по всем несущим стенам. Чаще всего устраивается армопояс под каждым межэтажным перекрытием, при этом он одновременно исполняет вторую важную функцию — служит поясом для опирания тяжелых перекрытий из бетона, либо деревянных лаг. Армопояс должен обязательно крепиться к кладке анкерами, чтобы при возникновении деформаций армопояс не мог съехать вдоль блоков по касательной.
Анкерами могут являться простые арматурные стержни с шагом 500 мм, заходящие в кладку не менее 200 мм и подходящие к верху армопояса.
Это важнейший элемент несущей конструкции, рекомендованный всем каменным строениям, независимо от типа фундамента и силы воздействия морозного пучения. Такой пояс повысит важнейшие свойства дома — прочность, надежность и долговечность.
Воздействие морозного пучения грунтов на фундаменты сооружений: что это такое и как избежать
Содержание:
- Что такое пучение
- Основные методы защиты
- Методы, реализуемые в процессе эксплуатации
Что такое пучение
При замерзании в морозные зимы вода превращается в лёд, объём которого превышает занимаемый ей в жидком состоянии. В результате возникают разнонаправленные нагрузки на грунт, имеющие максимальные значения в направлениях, минимально противодействующих им сил (вверх и в стороны).
Результатом воздействия морозного пучения грунтов на фундаменты сооружений является возникновение сил выталкивания, касательных и перпендикулярных нагрузок, действующих на подземные части строений, и приводящих к их деформации (разрушению).
Если не учесть эти процессы ещё на стадии проектирования, последствия могут быть плачевными.
Наивысших значений они достигают в грунтах, максимально удерживающих влагу и обладающих минимальной пористостью по всей глубине пласта.
Основные методы защиты
Используемые в процессе строительства методы защиты объекта от сил морозного пучения учитывают физику процесса и направлены на возможную минимизацию либо полное устранение причин, его вызывающих.
Существующие варианты защиты можно условно разделить на три группы:
- Предварительные;
- Технически реализуемые;
- Используемые в процессе эксплуатации объекта.
Методы защиты от морозного пучения, относящиеся к первой группе, включают обязательное предварительное проведение инженерно-геологических изысканий на требуемую глубину, благодаря которому проектировщики получают необходимую информацию:
- Тип грунта в месте предстоящего строительства и его склонность к пучению;
- Глубина промерзания;
- Уровень залегания подпочвенных вод;
- Среднемесячные температуры;
- Толщина снежного покрова;
- Оптимальная ориентация объекта по сторонам света.
Всё это позволяет ответить на вопрос о принципиальной возможности строительства проектируемого объекта на данном участке, выбрать нужный тип фундамента и оптимальные технологии защиты строения от негативного влияния сил, создаваемых морозным пучением.
Технические варианты защиты сваи от морозного пучения
При выполнении работ на грунтах с высокой вероятностью морозного пучения строящийся объект может защищаться с использованием одного или несколько вариантов, рассмотренных ниже.
1. Полная или частичная замена имеющегося грунта на непучинистый в месте выполнения строительных работ.
Полная замена на грунт, не поддающийся пучению, является весьма дорогостоящей процедурой и используется крайне редко (только если глубина заменяемого слоя не превышает 2 м). Гораздо чаще выполняется подушка под фундамент из непучинистых грунтов и обратная засыпка траншеи, отрытой под фундамент, после завершения монтажа последнего и удаления опалубки. Это также позволяет минимизировать негативное влияние сил пучения.
На начальном этапе фундаментных работ после отрывки траншеи на всю расчётную глубину, на её дне выполняется подушка, состоящая из смеси щебня и гравия с чистым промытым песком. Оптимальной (для частного дома) считается толщина ~ 30 см. Ширина отсыпанного слоя должна быть на 20-30 см больше упомянутого размера фундамента.
Это позволяет:
- равномерно распределить на грунт общую массу строения;
- минимизировать отрицательное воздействие на его подошву вертикальных выталкивающих сил, возникающих в результате морозного пучения.
При этом следует понимать, что подушка снижает их величину не потому, что выполнена из непучинистых грунтов. Она просто уменьшает слой последнего.
Пример. Глубина промерзания на строительном участке 1,5 м. Фундамент заглублен на 1,0 м. Оставшийся слой пучинистого грунта составляет 50 см, что может привести к его увеличению до 5 см (~ 10%). Выполнив подушку толщиной в 30 см, мы сокращаем слой до 20 см и, автоматически, его возможное увеличение, до 2 см.
Весной и осенью уровень грунтовых вод (глубина) повышается. Это может привести к тому, что подушка, частично или полностью, окажется под их воздействием и может быть загрязнена (заилена) мелкими частицами, содержащимися в воде. Они мигрируют вместе с подпочвенными водами, засоряют выполненную подсыпку, доводят её до состояния пучинистого грунта. Поэтому через несколько лет она не сможет достаточно эффектно противостоять разрушающим силам, возникающим вследствие пучения.
Чтобы этого не произошло, как можно дольше применяется специальный материал, геотекстиль, прекрасно фильтрующий воду и задерживающий все твёрдые взвеси.
В целях минимизации воздействия перпендикулярных и касательных сил на возводимый фундамент (как вариант, на стены подвала), возникающих в результате морозного пучения, выполняют обратную засыпку с использованием непучинистых грунтов, которые также предварительно защищаются геотекстилём.
Подобное заполнение не будет примерзать к стенкам фундамента, что также снижает силу касательных нагрузок.
В качестве дополнительного технического решения, направленного на снижение негативного влияния перпендикулярных и касательных нагрузок (ПКН) на боковые стенки фундамента, может быть увеличение их гладкости.
Бетон, из которого чаще всего возводится фундамент, весьма пористый материал, что существенно повышает вероятность его смерзания в морозное время года с прилежащими слоями грунта. Для исключения или минимизации подобного явления внешнюю стену фундамента накрывают слоем гидроизоляционного материала (рубероид, толстая ПЭ плёнка и т.п.). Простейший вариант — грунтование поверхности с использованием отработанного масла.
2. Изготовление монолитного фундамента, имеющего уширение в нижней части конструкции.
Другим технологическим решением, защищающим фундамент от вероятного деформирования силами, возникающими из-за морозного пучения, является использование полноценного арматурного каркаса по всей его глубине (высоте) и длине.
Для предотвращения выдавливания силами пучения, действующими на основание фундамента, последнее выполняется в форме трапеции (с нижним уширением). То есть здесь формируется площадка – анкер, исключающая возникновение подобной ситуации.
Этот вариант гарантирует требуемую стабильность функционирования фундаментов. Однако использовать его можно только при обустройстве фундаментов из бетона.
Если конструкция изготавливается с использованием блоков, кирпича или натурального камня (что исключает её внутреннее армирование), то класть боковые стены фундамента изначально требуется под углом (конструкция сужается вверх).
3. Заглубление подошвы фундамента ниже уровня промерзания.
Подобное решение, чаще всего, принимается при возведении свайных и свайно-винтовых фундаментов и позволяет полностью исключить влияние выталкивающих сил морозного пучения, но существенно увеличивает поверхность, на которую влияют ПКН.
Способы устранения негативного влияния последних рассмотрены выше.
В случае промерзания грунта на всю глубину заложения фундамента, рассматриваемом в данном разделе, весьма высока вероятность того, что опоры, изменив за зиму своё положение, не примут исходного в тёплое время года. Чтобы избежать данной проблемы выполняется ростверковое соединение всех опор (свай).
В тех случаях, когда речь идёт об установке столбов для заборов, выполняется двойная жёсткая обвязка последних по верхнему и нижнему уровню. Это необходимо в силу существенных нагрузок вероятного пучения (морозного), величина которых может составлять ≤ 10 тонн.
Оптимальным считается решение смонтировать все столбы на едином ленточном монолитном фундаменте, с тщательным армированием последнего.
4. Выполнение дренажных работ.
Чем сильнее увлажнены пучинистые грунты, тем большее увеличение объёма наблюдается при их промерзании (плотность воды примерно на 10% выше плотности льда).
Это автоматически увеличивает вероятность возникновения деформаций и, соответственно, требует существенного повышения требований к выполнению работ, обеспечивающих безопасность возводимого объекта.
Удаление влаги будет способствовать снижению показателя пучинистости и, соответственно, величины сил, негативно влияющих на фундамент. Данную процедуру следует разделить на составляющие.
В первом случае, речь будет идти о защите грунта от попадания в него «верховодки» (атмосферные осадки, снеготаяние).
Решению данной задачи служит выполнение отмостков по всему периметру возводимого здания (бетон, асфальт). Их ширина должна минимум на 200-300 мм перекрывать зону обратной засыпки, чтобы исключить просачивание влаги к фундаменту.
Во втором для борьбы с обводнённостью грунтов, проводится дренаж фундамента. Это обеспечивает снижение уровня подпочвенных вод.
Классическое решение предусматривает укладку системы дренажных (перфорированных) труб в предварительно промытый и уложенный гравийный слой. Этот материал частично задерживает частицы грунта. Монтаж труб ведётся с незначительными уклонами на расчётной глубине, что позволяет собирать воду со значительной площади участка и самотёком направлять её в специальные колодцы, либо в канализационный коллектор.
Выбирая подобное решение, следует понимать, что чисто гравийный фильтр прослужит недолго и не гарантирует защиту дренажных отверстий, имеющихся в трубах, от засорения мелкими частичками грунта.
Их прочистка — весьма трудоёмкий и довольно сложный процесс, под который заблаговременно обустраиваются на участке специальные колодцы на нужную глубину.
Чтобы увеличить сроки между плановыми чистками, используют геотекстиль, которым обёртываются трубы. Наличие подобного фильтра позволяет отказаться от обустройства фильтра гравийного.
5. Обустройство плитного фундамента
Плитные фундаменты часто именуют «плавающими». При подвижках грунтов перемещается вся плита. Поэтому на строение, возведённое на подобном основании, разрушающие и деформационные нагрузки от морозного пучения влияния не оказывают.
Обычно это ж/б монолитная армированная плита, мелкозаглубленная либо уложенная поверх грунта (глубина погружения равна нулю).
6. Утяжеление возводимой постройки.
Одним из решений, позволяющих минимизировать или полностью обнулить негативное влияние пучения грунтов, является увеличение массы постройки до значений, которые нагружают фундамент с силой, превышающей выдавливающую, которую создают пучинистые грунты при замерзании.
Поэтому тяжёлые здания на подобных грунтах строить гораздо выгоднее.
7. Утепление свайного фундамента снаружи на пучинистых грунтах
В регионах с положительными среднегодовыми температурами допустимо использование такого варианта, как утепление грунта. Использование утеплителя, уложенного в грунт, существенно снижает уровень промерзания. А в отдельных случаях полностью его исключает.
Суть метода. По всему периметру строящегося здания проводится выемка грунта на расстоянии, равном глубине промерзания в месте ведения строительства. Глубина выбирается с таким расчётом, чтобы уложенный утеплитель можно было засыпать сверху слоем непучинистого грунта толщиной ≥ 200 мм. И выполнить под него песчаную подушку не менее 100 мм.
Толщина материала выбирается с учётом климатических особенностей и его теплоизоляционных характеристик. Чаще всего для решения задачи используются пенопласт, керамзит или шлак.
Оптимальным утеплителем является экструдированный пенополистирол. При плотности выбранной марки в 35 кг/м³, его коэффициент теплопроводности равен 0,32 Вт/м°С. При 50 кг/м³, соответственно 0,36 Вт/м°С.
Этот материал отличается повышенной прочностью к сжимающим нагрузкам (рекомендован для использования в дорожном строительстве).
Использование утеплителя позволяет строить здания на мелкозаглубленных (до 500 мм) фундаментах.
Как правило, поверх утеплителя обустраивается отмостка ≥ 100 мм.
Методы, реализуемые в процессе эксплуатации
Круглогодичное отопление объекта
Средние температуры грунта под отапливаемым зданием ~ на 20% выше фиксируемых под неотапливаемым объектом, что способствует значительному снижению показателя пучинистости.
В качестве дополнительного способа может применяться рыхление грунта на глубину свыше 350 мм, с его последующим боронованием на 150 мм. Теплоизоляционные свойства такого грунта повышаются. В качестве дополнительного слоя утепления можно учитывать снеговой покров.
Сохранение основания в постоянно промёрзшем состоянии
При строительстве в зоне вечной мерзлоты принимаются меры для сохранения грунта в замороженном состоянии на протяжении всего периода эксплуатации. Для этого строительство ведётся на свайных фундаментах.
Почему летом жарко, а зимой холодно?
Ежедневные загадки
Забавные научные факты из Библиотеки Конгресса
« Назад к странице Метеорология, Климатология
Ответ
Потому что земная ось наклонена.
Все дело в наклоне земной оси. Многие люди считают, что температура меняется, потому что Земля ближе к солнцу летом и дальше от солнца зимой. На самом деле Земля дальше всего от Солнца в июле и ближе всего к Солнцу в январе!
Летом солнечные лучи падают на Землю под крутым углом. Свет не распространяется так сильно, что увеличивает количество энергии, попадающей в любое заданное место. Кроме того, длинный световой день дает Земле достаточно времени, чтобы достичь теплых температур.
Зимой солнечные лучи падают на Землю под небольшим углом. Эти лучи более рассредоточены, что сводит к минимуму количество энергии, попадающей в любое заданное место. Кроме того, длинные ночи и короткие дни мешают Земле нагреваться. Итак, у нас зима!
По часовой стрелке сверху слева:Зима в Йеллоустонском национальном парке.

Сельская Алабама весной. Коллекция Кэрол М. Хайсмит, Библиотека Конгресса.
Соевые и кукурузные поля готовы к уборке в конце лета в округе Кэрролл, штат Индиана. Коллекция Кэрол М. Хайсмит, Библиотека Конгресса.
Долина реки Делорес в Колорадо осенью. Коллекция Кэрол М. Хайсмит, Библиотека Конгресса.
Опубликовано: 19.11./2019. Автор: Справочно-научный отдел Библиотеки Конгресса
.Похожие сайты
- Что вызывает времена года (NASA SpacePlace) — Дети старшего школьного возраста изучают космонавтику и науку о Земле онлайн с помощью веселых игр, практических занятий, информативных статей и увлекательных коротких видеороликов.
- Глаза в небо, ноги на землю: практические занятия для детей Внешний Этот веб-сайт является частью программы Смитсоновской астрофизической обсерватории «Использование науки и Интернета в качестве инструментов для повседневных занятий».
Он содержит коллекцию детских онлайн-астрономических занятий. Вы можете прочитать главы о вращении или орбите Земли, перейдя по ссылке «Оглавление» внизу страницы.
- Земные сезоны: равноденствия, солнцестояния, перигелий и афелий 1992-2020 Внешний На веб-сайте Военно-морской обсерватории США (USNO) представлен список дат начала сезонов до 2020 года.
- Времена года и орбита Земли Внешний Этот веб-сайт USNO объясняет взаимосвязь между орбитой Земли и суровостью сезона.
- Планетарные сезоны НАСА. Этот сайт НАСА описывает времена года на других планетах нашей Солнечной системы.
У каждой планеты в нашей Солнечной системе есть времена года.
Этот сайт НАСА описывает времена года на других планетах нашей Солнечной системы.
Дополнительная литература
- Азимов, Исаак. Путеводитель Айзека Азимова по земле и космосу . Нью-Йорк, Рэндом Хаус. 1991. 285 с. (Вопросы и ответы).
- Кэмпбелл, Анн-Жанетт. Невероятная Земля Нью-Йоркской публичной библиотеки: книга ответов для детей .
- Gutsch, William A. Jr. 1001 Вещи, которые каждый должен знать о Вселенной . Нью-Йорк, Даблдэй, 1998. 353 стр.
- Пасачофф, Джей. Астрономия: от Земли до Вселенной, 6-е издание . США, Брукс/Коул-Томпсон-Лернинг, ок. 2002. 1т. различный
- Томпсон, Люк. Земля . Нью-Йорк, PowerKids Press, 2001.
24 стр. (Несовершеннолетний).
Условия поиска
- Времена года.
- Лето.
- Летнее солнцестояние.
- Погода.
- Зима.
- Зимнее солнцестояние.
Как наклон Земли создает короткие и холодные январские дни
Выше экватора зима официально начинается в декабре. Но во многих областях январь — это время, когда это действительно происходит. Ученый-атмосферник Дина Следовательно объясняет погодные и климатические факторы, которые в совокупности создают зимние условия в конце года.
Как орбита Земли влияет на дневной свет и температуру?
Когда Земля вращается вокруг Солнца, она вращается вокруг оси — представьте себе палку, проходящую через Землю от Северного полюса к Южному полюсу. В течение 24 часов, за которые Земля совершает один оборот вокруг своей оси, каждая точка на ее поверхности часть времени обращена к Солнцу, а часть времени от него. Это то, что вызывает ежедневные изменения солнечного света и температуры.
Есть еще два важных фактора: во-первых, Земля круглая, хотя и не идеальная. Во-вторых, его ось наклонена примерно на 23,5 градуса относительно его пути вокруг Солнца. В результате свет падает прямо на экватор, но падает на северный и южный полюса под углом.
Когда один из полюсов больше направлен к Солнцу, чем другой полюс, эта половина планеты получает больше солнечного света, чем другая половина, и в этом полушарии наступает лето. Когда этот полюс отклоняется от Солнца, эта половина Земли получает меньше солнечного света и там зима.
Сезонные изменения наиболее драматичны на полюсах, где изменения освещенности наиболее резкие. Летом полюс получает 24 часа солнечного света, и Солнце никогда не заходит. Зимой Солнце вообще никогда не всходит.
На экваторе, куда постоянно попадает прямой солнечный свет, продолжительность дня или температура в течение всего года практически не меняются. Люди, живущие в высоких и средних широтах, ближе к полюсам, могут иметь совсем другие представления о временах года, чем те, кто живет в тропиках.
Когда Земля вращается вокруг Солнца, солнечный свет падает на поверхность под разными углами из-за наклона планеты. Это создает сезоны.Есть старая поговорка: «Чем дольше дни, тем сильнее холод».

Это зависит от того, где вы находитесь в мире и откуда поступает ваш воздух.
Поверхность Земли постоянно поглощает энергию Солнца и сохраняет ее в виде тепла. Он также излучает тепло обратно в космос. Нагревается или охлаждается поверхность, зависит от баланса между тем, сколько солнечной радиации поглощает планета, и сколько она излучает.
Но поверхность Земли неоднородна. Земля обычно нагревается и остывает намного быстрее, чем вода. Вода требует больше энергии для повышения и понижения температуры, поэтому она нагревается и остывает медленнее. Из-за этой разницы вода является лучшим резервуаром тепла, чем суша, особенно большие водоемы, такие как океаны. Вот почему мы склонны видеть большие колебания между теплым и холодным внутри страны, чем в прибрежных районах.
Чем дальше на север вы живете, тем дольше количество и интенсивность дневного света начинают значительно увеличиваться в середине зимы, поскольку ваше местоположение отклоняется от Солнца. Тем временем те области, которые получают мало солнечного света, продолжают излучать тепло в космос. Пока они получают меньше солнечного света, чем излучают тепла, они будут становиться все холоднее. Особенно это касается суши, которая теряет тепло намного легче, чем вода.
Поскольку Земля вращается, воздух циркулирует вокруг нее в атмосфере. Если воздух, поступающий в ваш район, поступает в основном из таких мест, как Арктика, где зимой не так много солнца, вы можете долгое время подвергаться воздействию очень холодного воздуха. Это происходит на Великих равнинах и Среднем Западе, когда из Канады дует холодный воздух.
Но если воздух попадает в водоем, температура которого в течение года более стабильна, эти колебания можно значительно сгладить. Сиэтл находится с подветренной стороны от океана, поэтому зимой здесь на много градусов теплее, чем в Бостоне, хотя он находится севернее Бостона.
Как быстро мы теряем дневной свет перед солнцестоянием и возвращаем его после него?
Это сильно зависит от вашего местонахождения. Чем ближе вы находитесь к одному из полюсов, тем быстрее скорость изменения дневного света. Вот почему на Аляске зимой практически нет дневного света, а летом практически нет темноты.
Даже для определенного места изменение не является постоянным в течение года. Скорость изменения дневного света самая медленная в дни солнцестояния — зимой в декабре, летом в июне — и самая высокая в дни равноденствий, в середине марта и середине сентября. Это изменение происходит по мере того, как область на Земле, получающая прямой солнечный свет, колеблется от 23,5 северной широты — примерно так же далеко к северу от экватора, как Майами, — до 23,5 южной широты, примерно так же далеко к югу от экватора, как Асунсьон, Парагвай.
На этом спутниковом снимке запечатлены четыре смены времен года. В дни равноденствия, 20 марта и 20 сентября, линия между ночью и днем представляет собой прямую линию с севера на юг, и кажется, что солнце находится прямо над экватором. Земная ось отклоняется от Солнца во время декабрьского солнцестояния и к Солнцу во время июньского солнцестояния, распространяя все меньше и меньше света на каждое полушарие.
Что сейчас происходит на противоположной стороне планеты?
При дневном свете люди на другой стороне планеты видят полную противоположность тому, что видим мы. Прямо сейчас они находятся на пике своего лета и наслаждаются самым большим количеством дневного света, который они получат в этом году. Я изучаю аргентинские ливни с градом и тропические циклоны в Индийском океане, и оба этих сезона штормов с теплой погодой сейчас в самом разгаре.
[ Более 140 000 читателей полагаются на информационные бюллетени The Conversation, чтобы понять мир. Зарегистрируйтесь сегодня.]
Но есть ключевое отличие: в Южном полушарии намного меньше суши и намного больше воды, чем в Северном полушарии. Благодаря влиянию южных океанов на суше в Южном полушарии, как правило, меньше очень экстремальных температур, чем на суше в Северном полушарии.
Таким образом, несмотря на то, что точка на противоположной стороне планеты от вашего местонахождения может сейчас получать ровно столько же солнечного света, сколько летом, погода там может отличаться от летних условий, к которым вы привыкли.