От чего зависит яркость свечения светодиода – это, принцип работы, виды устройства, как работают сверхяркие, как устроен, из чего состоит, от чего зависит яркость свечения

Содержание

ЯРКОСТЬ СВЕТОДИОДА

ЯРКОСТЬ СВЕТОДИОДА

     Что больше всего интересует потребителя при выборе светодиодов для ламп и других осветительных устройств — не ток потребления, не размеры и даже не срок службы, а яркость. Как известно яркость — обозначается буквой L, это световая величина, равная отношению светового потока d2 к геометрическому фактору ddAcos : L = d2/ddAcos. Где d — заполненный излучением телесный угол, dA — площадь участка, испускающего излучение, или угол между перпендикуляром к этому участку и направлением излучения.  Другими словами яркость, это сотношение силы света I элемента поверхности к площади его проекции, перпендикулярной рассматриваемому направлению: формула L = dI/dA cos . Также яркость можно сформулировать и четез отношение освещённости Е в точке плоскости, перпендикулярной направлению на источник, к элементарному телесному углу, в котором заключён поток, создающий эту освещённость: формула L = dE/dcos. Яркость измеряют в канделлах на метр в минус второй степени: кд·м-2. Яркость, непосредственно связана со зрительными ощущениями, так как освещённость изображения предмета на сетчатке глаза пропорциональна яркостям этого предмета. 

     Что касается конкретно яркости светодиодов, то она представляет собой суммарную мощность, выделившуюся в виде света — излучающая энергия или излучающий поток, и измеряется она в ваттах. Но насколько ярким окажется объект, будет зависеть и от дополнительных факторов: сколько излучаемого потока выпущено в направлении наблюдателя и насколько чувствителен наблюдатель к длине волны света. 

длина волны света


     Здесь мы введём понятие стерадиан — телесный угол, твердых объёмных углов. Проще говоря конус с вершиной в источнике света. Если поток излучения источника — светодиода или лампы, одинаковый во всех направлениях, интенсивность излучения будет равна общему потоку излучения, разделенному на 12,57 стерадиан, пространственный угол полной сферы. В светодиодах, излучающий поток концентрируется в луче, а интенсивность излучения будет равна излучающему потоку, поделенному на пространственный угол луча. Ширина углов обычно обозначается в градусах, а интенсивность излучения обычно выражается в милливаттах на стерадиан мВт / ср., что вызывает необходимость перевода угла луча в стерадианы: sr = 2 π (1 — cos(θ/2)), где sr — телесный угол, в стерадианах, и θ — это угол луча.

строение светодиода


     Световой поток измеряется в люменах, а сила света измеряется в люменах на стерадиан и названная канделой. Отношения между световым потоком, силой света и углом луча означают, что акцентом учета светодиода в более плотных лучах при уменьшающемся угле луча, увеличит силу света (то есть яркость) без увеличения светового потока. Поэтому при покупке светодиода для освещения – светодиод с 1000 милликандел и 45° углом обзора, даст столько же света, как светодиод в 10000 милликандел с 12° углом обзора. Светодиод, как видим достаточно яркий, но эта яркость узконаправленная.

светящийся светодиод


     Яркость светодиодов принято измерять в милликанделах — 1 мкд = 0.001 канделы. Обычные советские светодиоды имеют яркость в диапозоне 20 — 50 мкд., а сверхяркие светодиоды могут достигать 20000 мкд и выше. Чтоб было ещё нагляднее замечу, что обычная лампа накаливания 100 Вт производит около 1500 люмен, и если свет будет излучаться одинаково во всех направлениях, она будет иметь яркость около 120 000 мкд. Но если луч будет узконаправленный в угле 20°, она будет иметь яркость окло 16 000 000 мкд. Так что светодиодам, даже сверхмощным всё ещё далеко до ламп в плане излучаемой яркости, но с каждым месяцем этот разрыв стремительно сокращается.

     ФОРУМ по светодиодам

   Светодиоды

Очень важный параметр светодиодных ламп, о котором мало кто знает

На упаковках светодиодных ламп можно найти множество параметров: мощность, световой поток, эквивалент мощности, индекс цветопередачи. Но один очень важный параметр производители указывают крайне редко. Это тип драйвера.
По ГОСТ 29322-92 в сети должно быть напряжение 230 вольт, однако тот же ГОСТ допускает отклонение сетевого напряжения ±10%, то есть допустимо напряжение от 207 до 253 вольт. Впрочем, во многих районах (особенно, сельских) напряжение иногда падает до 180 вольт и ниже.

При пониженном напряжении обычные «лампочки Ильича» светят гораздо тусклее. На нижнем пороге допустимого напряжения 207 вольт, 60-ваттная лампа накаливания, рассчитанная на 230 В, светит, как 40-ваттная на номинальном напряжении (habr.com/ru/company/lamptest/blog/386513/).

Работа светодиодных ламп на пониженном напряжении зависит от типа используемой электронной схемы (драйвера).

Если в лампе используется простейший RC-драйвер или линейный драйвер на микросхеме, лампа ведёт себя почти так же, как лампа накаливания (светит тусклее при понижении напряжения, а при скачках напряжения в сети её свет «дёргается»).

Если же используется IC-драйвер, яркость лампы не меняется при изменении напряжения питания в очень широких пределах. Фактически, у таких ламп есть встроенный стабилизатор.

Если посмотреть на все светодиодные лампы, которые я протестировал в проекте Lamptest.ru, определяя тип драйвера, окажется, что у 3/4 всех ламп IC-драйвер и только у четверти линейный или RC-драйвер. Если же посмотреть только на филаментные лампы, картина резко меняется: из 321 протестированных ламп только у 131 (40%) IC-драйверы.

У большинства ламп с линейным драйвером яркость падает на 5% от номинальной при снижении напряжения до 210-220 В и на 10% при напряжении 200-210В.

Некоторые лампы с IC-драйвером не снижают яркость при падении напряжения даже до 50 вольт, но большинство стабильно работает при напряжении от 150 вольт.

Вот так ведут себя две филаментные лампы (левая с IC-драйвером, правая — с линейным) при изменении напряжения от 230 до 160 вольт.


Я измеряю минимальное напряжение, при котором световой поток лампы падает не более, чем на 5% от номинального. В таблице результатов Lamptest это напряжение указано в столбце «Вмин». Если при снижении напряжения световой поток начинает падать сразу, я указываю линейный (LIN) тип драйвера (столбец «drv»), если световой поток при снижении напряжения стабилен, а потом начинает снижаться, — тип драйвера IC1, если при снижении напряжения лампа выключается, — IC2, если начинает вспыхивать — IC3.

К сожалению, тип драйвера по упаковке лампы и параметрам, приводимым производителями на сайтах, узнать почти невозможно. Отдельные производители пишут на упаковке «IC драйвер». Чаще пишут широкий диапазон напряжения, например «170-260В», но не всегда это соответствует действительности. На Lamptest много ламп, у которых указаны широкие диапазоны напряжений, а фактически в них установлен линейный драйвер и на нижней границе указанного диапазона они горят «вполнакала». Указание узкого диапазона «220-240 В» или просто «230 В» тоже ни о чём не говорит: множество таких ламп построены на IC-драйвере и фактически работают при значительно более низких напряжениях без снижения яркости.

Всё, что я могу посоветовать для определения типа драйвера — смотреть результаты на Lamptest по лампе или её аналогам (тот же производитель, тот же тип, тот же цоколь), если конкретная модель лампы ещё не протестирована.

Конечно, лампы с IC-драйвером лучше. Они не меняют яркость при уменьшении напряжения в сети и их свет не «дёргается» при перепадах напряжения. Кроме того, такой драйвер заведомо лучше защищён от любых перепадов напряжения и в целом более надёжен.

Рекомендую учитывать при выборе светодиодных ламп тип драйвера и по возможности покупать лампы с IC-драйвером.

© 2019, Алексей Надёжин

Светодиоды

Части светодиодов

LED T-1 and T-1¾ packages.LED terms.

Epoxy body — эпоксидное вещество
Wire bond — термокомпрессионное 
соединение проволочных выводов 
Die — кристаллик
Die cup — чаша кристаллика
Leads — проводка

Светодиоды бывают всех форм и размеров, но 3 мм T-1 и  5 мм T-1¾ являются самыми распространенными. Кристаллики — крошечные полупроводниковые кубы, состав которых определяет цвет испускаемого света. Находятся в основании чашки кристаллов, которые имеют рефлексивные стороны, чтобы отражать свет, излучаемый относительно конца кристаллов светодиодов. Тело из эпоксидной смолы сформировано так, чтобы действовать как линза и фокусировать свет в луч. Расстояние от чашки кристалла до куполообразного конца линзы определяет, как сильно фокусируется получаемый пучок света. Некоторые светодиоды имеют плоские или даже вогнутые концы, который сосредотачивают свет в широкий луч.

Цвета светодиода

Светодиоды видимого свечения

Color vs output graph

Длина волны,
 нм
Название 
цвета
Пример
цвета
более 1100Инфракрасный
770-1100Длинноволновая 
ближняя часть 
ИК-диапазона(NIR)
770-700Коротковолновая 
ближняя часть 
ИК-диапазона(NIR)
700-640Красный
640-625Красно-оранжевый
625-615Оранжевый
615-600Янтарный
600-585Желтый
585-555Желто-зеленый
555-520Зеленый
520-480Зелено-голубой
480-450Синий
450-430Индиго
430-395Фиолетовый
395-320Ультрафиолетовый-A
320-280Ультрафиолетовый-B
280-100Ультрафиолетовый-C

Цвета светодиода часто указываются в нм (нанометры), которыми измеряют длину волны света. Указанная длина волны — длина волны самой высокой мощности — светодиоды не являются полностью монохромными, а скорее производят волну на коротком участке цветового спектра. Диаграмма справа показывает отношение цвета к мощности в стандартном зеленом светодиоде — самая высшая точка — 565 нм, но он излучает свет в пределе от 520 до 610 нм (имеется ввиду участок спектра). Половина ширины спектральной линии — ширина этой кривой при 50-процентной мощности (0,5 на оси Y) — для этого светодиода, это около 30 нм — а также мера «чистоты» (монохроматичности) цвета.

Обратите внимание на температуру, указанную в верхнем правом углу графика — светодиод производит незначительно различающиеся цвета при разных температурах. Они также испускают разные цвета при разной силе тока, особенно белые светодиоды, которые зависят от того, как фосфор меняет разноцветную матрицу на белый цвет.

Инфракрасные светодиоды

Инфракрасная полоса может быть разделена на Ближний Инфракрасный (NIR) и Далеко Инфракрасный (IR). Далеко инфракрасный — тепловое инфракрасное излучениеимеет обыкновение обнаруживать горячие объекты или видеть утечки высокой температуры в зданиях, и путь за пределами диапазона светодиодов. (NIR может быть далее разделен на два диапазона – длинноволновый и коротковолновый, основанный)

Инфракрасные светодиоды(LEDs) иногда называют IRED (Инфракрасные светодиоды). 

Ультрафиолетовые светодиоды

Ультрафиолетовый свет разделен на три диапазона: ультрафиолетовый-A, который является довольно безвредным; ультрафиолетовый-B, который вызывает загар, и ультрафиолетовый-C, который разрушает вещи. Большинство ультрафиолетового света B и С от солнца отфильтрованы озоновым слоем, т.о. мы получаем очень мало этого излучения. Светодиоды испускают ультрафиолет-A.

400 нанометров — довольно общая длина волны для ультрафиолетовых светодиодов. Это располагается на границе между фиолетовым и ультрафиолетовым диапозоном, т.о. существенная часть испускаемого света видима. По этой причине ультрафиолетовые светодиоды 400 нм иногда оцениваются в милликанделлах, даже при том, что половина их энергии невидима. Светодиоды с более низкими длинами волны, типа 380нм, обычно оцениваются не в милликанделлах, а в милливаттах.

Не смотрите в ультрафиолетовые светодиоды!

Белые светодиоды

Белый свет — это смесь всех цветов. Цветная температура — мера относительных количеств красного или синего — выше, цветные температуры имеют больше синего.

Цветная 
температура

Пример

2000°

Газовое освещение

2470°

Раскаленная лампочка 15 Ватт

2565°

Раскаленная лампочка 60 Ватт

2665°

Раскаленная лампочка 100 Ватт

2755°

Раскаленная лампочка 500 Ватт

2900°

Криптоновая лампочка 500 Ватт

3100°

Проектор с лампой нити накаливания

3250°

Фото прожектор

3400°

Галоген

3900°

Карбоновая дуга

4200°

Лунный свет

4700°

Промышленный туман с дымом

5100°

Туманная погода

5500°

Солнце 30° над горизонтом

6100°

Солнце 50° над горизонтом

6700°

Электронная вспышка

7400°

Пасмурное небо

8300°

Туманная погода

30,000°

Голубое небо

Помните, что это — мера цвета, а не яркости, так что не удивляйтесь, потому что лунный свет «более горяч» чем карбоновая дуга. Это означает только то, что цвет является более синим, и все.

Белые светодиоды имеют цветную температуру, но монохроматические светодиоды нет.

Яркость светодиода

Суммарная мощность, выделившаяся в виде света, называется излучающая энергия или излучающий поток, и измеряется в ваттах. Насколько ярким окажется объект, однако, будет зависеть от двух дополнительных факторов:

  • сколько излучаемого потока выпущено в направлении наблюдателя
  • насколько чувствителен наблюдатель к длине волны света.

Чтобы определить количество, во-первых, мы должны ввести понятие стерадиан(ед. измерения телесного угла), твердых (3-D) углов. Подумайте о конусе с вершиной в источнике.

Если поток излучения источника излучения одинаковый во всех направлениях, интенсивность излучения будет равна общему потоку излучения, разделенному на 12,57 (4π) стерадиан, пространственный угол полной сферы. В случае со светодиодом, излучающий поток, как правило, концентрируется в луче, а интенсивность излучения будет равна излучающему потоку, поделенному на пространственный угол луча. Ширина углов обычно обозначается в градусах, а интенсивность излучения обычно выражается в мВт / ср., что делает необходимы перевод угла луча в стерадианы:

sr = 2 π (1 — cos(θ/2))

где sr является телесным углом, в стерадианах, и θ — это угол луча.

Световой поток и сила света — размеры как сияющая энергия и интенсивность излучения, только с поправкой на чувствительный человеческий глаз. Мощность излучения длины волны 555 нм, умножается на коэффициент 1, но светом выше, и более низкой длиной волны усилены более низкими факторами, пока инфракрасные и ультрафиолетовые диапазоны волн не достигаются, когда лучевая энергия умножена на ноль.

Световой поток измеряется в люменах, в то время как сила света измеряется в люменах на стерадиан, также названная канделой.

Отношения между световым потоком, силой света и углом луча означают, что акцентом учета светодиода в более плотных лучах (уменьшающийся угол луча), увеличит силу света (яркость) без фактического увеличения светового потока (количество света). Имейте это в виду, что при покупке светодиода для осветительных целей – светодиод с 2000 милликандел и 30° углом обзора дает столько же света, как светодиод в 8000 милликандел с 15° углом обзора. (угол составляет половину в ширину и высоту, т.о. луч в 4 раза более яркий). Это одна из причин того, что ультра яркие светодиоды часто «чисто водные», чтобы сохранить движение света в одном направлении, а не распространяться во всех местах.

Яркость светодиодов измеряется в милликанделах(mcd) или тысячной доли канделы. Индикатор светодиода как правило в диапозоне 50 mcd. «Ультра-яркие» светодиоды могут достигать 15000 mcd и выше. 

Для сравнения, типичная лампа накаливания в 100 Вт производит приблизительно 1700 люмен, если свет будет излучаться одинаково во всех направлениях, она будет иметь яркость около 135 000 mcd. Если же луч целенаправленный в 20°, то она будет иметь яркость окло 18 000 000 mcd.

Интенсивность света и других электромагнитных излучений, как мощность за единицу площади измеряется в ваттах на квадратный метр. Обычные лампы накаливания излучают больше энергии в инфракрасном, чем в видимом спектре. Количество световой энергии называется световым потоком и измеряется в люменах и определяется, как количество света, излучаемого 1/60 см2 площади чистой платины на её температуру плавления (около 1770° С) в рамках телесного угла в 1 стерадиан. Например, в общей сложности мощность излучения (светового потока) от лампочки накаливания в 40 Вт составляет около 500 лм, в то время как мощность излучения люминесцентной трубки 40 Вт составляет около 2300 лм.

Интенсивность освещения, аналогично интенсивности электромагнитного излучения (которая является мощностью на единицу площади) — световой поток на единицу площади, называется освещенностью. Единицей освещенности является люмен на квадратный метр, также называемый люкс:

1 lux = 1 lm/m² 1 люкс = 1 лм / м²

Единицей силы света является один люмен на стерадиан, также измеряемый в канделах(кд):

1 cd = 1 lm/sr 1 кд = 1 лм / ср

Яркость светодиодов – ультрафиолетовые и инфракрасные светодиоды

Так как кандела и люмен — единицы, которые приспособлены, чтобы компенсировать переменную чувствительность человеческого глаза к различным длинам волны, и инфракрасные и ультрафиолетовые светодиоды полностью невидимы (по определению) для человеческого глаза.

Инфракрасные и ультрафиолетовые светодиоды измеряются в ваттах для излучаемого потока и в ваттах/стерадианах для излучаемой интенсивности. Довольно типичный «яркий» инфракрасный светодиод производит приблизительно 27 мВт/ср, хотя может доходить до 250 мВт/ср или около этого. Сигнальные светодиоды, как на ТВ-пультах, значительно менее мощные.

Однако имейте в виду, что светодиоды не являются совершенно монохроматическими. Если их пик близок к видимому спектру, то их полоса пропускания может наложиться на видимый спектр достаточно, чтобы быть видимой как тусклый вишнево-красный свет.

Этот тусклый красный свет, кстати, часто требуемый ошибочно для того, чтобы отличить хорошо освещающие инфракрасные диоды от более тусклых инфракрасных диодов. Какой диод лучше для конкретного применения целиком зависит от длины волны, к которой приемник наиболее чувствителен.

Использование светодиодов

Color vs output graphКак правило, различные цветные светодиоды требуют различного напряжения для работы – красный цвет берет наименьшее напряжение, и поскольку цвет продвигает цветной спектр к синему, увеличивается и требование напряжения. Обычно красные светодиоды требуют около 2-х вольт, а синие – около 4-х вольт. Типичные светодиоды, однако, требуют 20-30 мА тока независимо от требований напряжения. В графике слева показано насколько сила тока типичного красного светодиода будет меняться на различных напряжениях.

Заметьте, что светодиод при силе тока менее 1.7 В является «выключенным». Между 1.7 В и 1.95 В «динамическое сопротивление», соотношение напряжения к силе тока уменьшается до 4 Ом. Выше 1.95 В светодиод полностью «включен» и динамическое сопротивление остаётся постоянным. Динамическое сопротивление отличается от сопротивления, в котором кривая не линейна. Просто помните, что эта нелинейная связь между напряжением и током означает, что закон Ома не работает для светодиодов.

Формула для расчета значения серии резистора:

Rseries = (V — Vf) / If

где Rseries-зачение резистора в Омах, V – напряжение, Vf – это падение напряжения через светодиод и If — сила тока светодиода, которую должны видеть.

Acceptable LED configurationsНапример, для вышеупомянутый диода было бы хорошим напряжение в 12 В при 500 Омах в резисторе.

Вы можете использовать один резистор для управления током серии диодов, и в этом случае Vf — это общее падение напряжения всех светодиодов. Не всегда хорошая идея использовать один резистор для контроля группы светодиодов, если они будут использовать одну силу тока, то это может привести к разной яркости или дыму.

Действительно ли необходима серия светодиодов?

Одним словом – нет. Серия резисторов не является необходимой, если напряжение Vf., может регулироваться в соответствии со светодиодами. Один из способов добиться этого – сбалансированные батареи для светодиодов. Если напряжение светодиода Vf составляет 1.2 В, Вы можете использовать ряд из десяти диодов (10 x 1.2В = 12В) с аккумулятором 12 В без серии резисторов.

Однако, Вы должны быть уверены, что батарея способна поддержать ожидаемое напряжение, некоторые аккумуляторы часто поставляют немного больше напряжения, чем номинальное(например 12-вольтный автомобильный аккумулятор может достигать напряжения 13.8 В при полном заряде), но разные типы батарей имеют разное внутреннее сопротивление, которое приводит к «перекосу» напряжения при различных условиях нагрузки.

Вот небольшая таблица с типичным внутренним сопротивления различных типов батарей. Заметьте, как у щелочной батареи АА внутреннее сопротивление в 5 раз превышает сопротивление NiMH батареи АА, а у щелочной батареи D в 11 раз выше NiCad батареи D.

Тип батареиВнутреннее 
сопротивление(Ом)
9В Цинк-углерод35
9В Литиевая16-18
9В Щелочная1-2
AA Щелочная0.15
AA Никель-
металлогидридная
0.03
D Щелочная0.10
D Никель-кадмиевая0.009
D свинцовый0.006
Заметка: внутреннее сопротивление в таблице при полном заряде батареи и комнатной температуре.

Кроме того, когда батарея разряжена, напряжение значительно понизится. Из-за резкого изменения напряжения по кривой (см. график в разделе “использование светодиодов”) небольшие изменения напряжения приведут к большим изменениям тока.

Добавление сопротивление в цепи поможет стабилизации напряжения через светодиод. В некотором смысле, светодиод и резистор последовательно выступают в качестве регулятора напряжения.

Последовательно с резистором, светодиод будет снижать напряжение по всей цепи, пока не проводит ток. Как только начинает проводить, сопротивление падает незначительно – всего на несколько Ом. Снижение напряжения через повышение резистора и падение напряжения через светодиод остается практически исправленным. Падение напряжения через светодиод остается несколько выше порогового напряжения, даже если напряжение питания повышается. Любое дальнейшее увеличение напряжения питания увеличивает падение напряжения через резистор, но не через светодиод.

Посмотрите, что происходит, когда напряжение, поставляемое, резистором в 150 Ом последовательно со светодиодом колеблется от 4.5 до 5.5 Вольт.

НапряжениеVeIVseriesVled
4.502.600.0172.521.98
4.602.700.0172.621.98
4.702.800.0182.721.98
4.802.900.0192.811.99
4.903.000.0192.911.99
5.003.100.0203.011.99
5.103.200.0213.111.99
5.103.200.0213.202.00
5.303.400.0223.302.00
5.403.500.0233.402.00
5.503.600.0233.492.01

Вы можете видеть, как напряжение светодиода (Vled) меняется всего на 0.03 В, даже если напряжение меняется на 1 Вольт. Даже с маленьким повышением напряжения светодиода, ток увеличивается на 6 мА.

Рассматриваемый светодиод имеет пороговое напряжение Vthreshold в 1.9 В, выше которого он имеет динамическое сопротивление (Rdynamic) 4.55 Ом и включают 20 мА при 2 В. (это пример заднего светодиода из пункта “Использование светодиодов”). Поставляемое напряжение в 5 В и Rseries 150 Ом. Вот формулы:

Ve = Vsupply — Vthreshold

I = Ve / (Rseries + Rdynamic)

Vseries = Rseries / (Rseries + Rdynamic) * Ve

Vled = Vsupply — Vseries

Ve — напряжение выше порогового, I — сила тока в настоящее время в цепи, Vseries – падение напряжения через резистор, Vled – падение напряжения через светодиод.

Ситуация, в которой действительно важно подключать диод без последовательного резистора — это когда вам нужно максимум эффективности -последовательный резистор потребляет мощность (P = I2R) — и отклонения в яркости могут допускаться.

Есть также другие пути для контроля тока диодом. Регулятор напряжения может великолепно справиться с этой задачей, но возможно, регулятор тока такой как этот даже лучше:

Диод управляемый простым регулятором тока

Движение светодиодов с переменным током.

Первый, и самый очевидный вопрос: почему? Но мы пропустим это, предполагая, что Вы знаете причину.

Есть несколько факторов к рассмотрению. Каждый из светодиодов только проводит за время в течение той части положительной половины цикла, в течение которого напряжение является выше порогового напряжения светодиода.

Это означает, что светодиод проводит меньше чем половину времени, которое производит яркость. Во-вторых, даже когда светодиод проводит, среднее напряжение будет гораздо меньше, чем пиковое напряжение. Среднее напряжение положительной половины синусоида — только 64 % пикового напряжения. Яркость поэтому далее уменьшена.

Acceptable LED configurationsЭто то, что я подразумеваю. Ось X — время, Ось Y — напряжение. Синяя линия — напряжение поставки; красная линия — светодиодный порог. В этом случае, пиковое напряжение — 5В, и порог — 1.2 В (типичный для красного светодиода). «Эффективное напряжение»(термин автора), является напряжением, которое выше порогового напряжения, напряжение, которое фактически освещает светодиод; остальная часть напряжения не делает ничего, или потому что ниже порогового, или это потому, что имеет неправильную полярность. Эффективное напряжение обозначено в графе серыми областями. Светло-серая область — среднее эффективное напряжение для напряжения поставки переменного тока; здесь, 1.04 В. Темно-серая область — среднее эффективное напряжение для поставки постоянного тока, 3.8 В, которое пропускает переменный ток. Светло-серая область — лишь 27% области обеих серых объединенных областей. Если бы светодиод имел пороговое напряжение ноль (которое не было бы хорошим?) эффективное напряжение переменного тока все еще было бы только 32% эффективного напряжения постоянного тока. Как пороговые повышения напряжения, » продолжительность включения » понижается оттуда.

Эффективное напряжение (V — V т) — термин из формулы, приведенной выше, и может заменить его для расчета стоимости желаемого сопротивления.

Можно повысить эффективное напряжение переменного тока по отношению к теоретическому максимуму, составляющему 32% от эффективного напряжения постоянного тока путем увеличения напряжения питания — это делает предельное напряжения меньшей частью самого высокого напряжения, так что светодиод раньше включается в цикл и остается включенным дольше. Но следует избегать использования предельного напряжения большего чем обратное напряжение, которое светодиод может выдержать, как правило это 5 вольт. Помните, что когда светодиод не проводит ток, все падение напряжения будет проходить через него. Вы можете обойти эту проблему путем подсоединения в цепь другого отдельного светодиода — кремниевые диоды могут выдержать гораздо большее обратное напряжения, чем обычные светодиоды, хотя дополнительные диоды будут вводить второй предельное напряжение. Включение в цепь двухполупериодного выпрямителя позволят вам управлять светодиодом в обеих половинах цикла, увеличив максимально эффективное напряжение до 64% напряжения постоянного тока, но имея при этом два дополнительных предельных напряжения.

Acceptable LED configurationsНекоторые белые светодиоды требуют дальше напряжения (обычно 3,5 или 4 вольта) очень близкого к своему максимальному обратному напряжению (как правило, 5 вольт), так что светодиод будет включен лишь в течение весьма незначительной части цикла, что делает его очень слабым. Например, диод рассчитанный на 3.5 вольта подключенный к 5 вольтам переменного тока, будет иметь эффективный вольтаж только 0.25 вольт, 17% от эффективного постоянного тока в 1.5 вольта.

Чтобы компенсировать низкий уровень эффективного напряжения, мы хотим управлять светодиодом довольно трудно получить средний ток до 20 мА. Если эффективное напряжение всего 0,25 вольт, то резистор должен быть 13 Ом, и нынешний пиковый ток должен составлять 120 мА. Может ли светодиод выдержать пиковый ток в 120 мА? Вероятно, нет.

Одно из возможных решений — это два светодиода в обратно-параллельном подключении, один поляризован на свет во время позитивной половины цикла, а другой поляризован на свет во время негативной половины цикла. Сразу же, это удваивает выходное освещение, так как мы используем обе половины цикла. К тому же так как на каждом диоде обратное напряжение мы увидим падение переднего напряжения на диоде, вы можете управлять вольтажем как хотите, а рабочий цикл может становиться на 64% короче. Использование прямоугольных импульсов переменного тока вместо синусоидальных импульсов переменного тока позволит вам достичь почти 100% либо используя обратно параллельные диоды, либо один диод подключенный на удвоенном ходу для полуцикла.

Яркость свечения светодиода

Многие покупатели задают вопрос — что означают все  эти характеристики светодиодов, указанные на упаковках и в спецификациях? Ватты, люмены, длина волны, свечи, канделы, мили канделы — это лишь немногая часть терминов, которые используются для определения яркости света.  Вот несколько параметров, которые необходимо знать для бытового определения яркости, не вдаваясь в подробности фотометрии:

Сила света (luminous intensity, обычно измеряемая в канделах -cd или миликанделах mcd). Яркость одной канделы примерно равна яркости одной обычной свечи. Миликандела (или мкд) одна  тысячная  канделы, отсюда приставка «мили».  1000 миликандел = 1 кандела.

Поскольку свет распределяется неравномерно, угол освещения (viewing angle) является очень важным параметром для светодиодов. Восприятие освещенности зависит от местоположения смотрящего, поэтому необходимо определить  какую часть комнаты необходимо осветить и  определить необходимое количество и расположение ламп. Этот параметр зависит, в том числе, от типа линзы. Рассеивающая (матовая) линза будет формировать более широкий угол освещения, но такой свет может восприниматься более тусклым, чем от светодиода с прозрачной линзой.

Другой важный  параметр — световой поток (Luminous flux) или «мощность» света в потоке, который можно определить, если известна сила света и угол освещения. Световой поток — это показатель «мощности» света, с учетом длины волны, которая  воспринимается человеком. Световой поток измеряется в люменах.

Нетрудно заметить, что угол освещения очень сильно влияет на световой поток.  Светодиодная  5000 мкд лампа с углом освещения в 60 градусов в четыре раза мощнее чем аналогичная с углом освещения в 30 градусов.

Потребляемая мощность в ваттах — это параметр, который не так давно был для нас единственным для определения яркости лампы накаливания, но для светодиодных ламп этот параметр не является определяющим. Технология производства развивается и у светодиодов одинаковой яркости может быть разное потребление энергии. Но для упрощения восприятия производители указывают на упаковке ламп бытового применения аналог лампы накаливания/ галогенной лампы по энергопотреблению. Этим значениям в большинстве случаев можно доверять, если вы приобретаете лампы известных производителей, таких как Philips, Cree, Osram.

Для ориентира, приведем следующее сравнение различных ламп General Electric:

сравнение эффективности ламп освещения General Electric

 

 

Напряжение, ток и типы светодиодов, от чего зависит их цвет

Про светодиоды, которые ворвались в нашу жизнь написано много. Но какое правильное и безопасное напряжение для светодиодов и ток, какие бывают их типы, и собственно, от чего зависит их цвет? Давайте попробуем в этом разобраться, чтобы правильно и грамотно их использовать.

Из существующих типов светодиодов, это традиционные неорганические в традиционной форме диода, которая была доступна с 1960 года. Он изготовлен из наиболее широко используемых полупроводниковых соединений, таких как алюминиевый арсенид галлия, арсенида фосфида галлия, и многих других. Используются как панели индикаторов, одноцветные 5 мм, светодиоды для поверхностного монтажа, и даже двухцветные и многоцветные светодиоды, мигающие, буквенно-цифровые светодиодные дисплеи.

Органические светодиоды -типа светодиодных дисплеев на основе органических материалов, которые изготовлены в виде листов и обеспечивают диффузный свет. Обычно изготовляются с использованием очень тонкой пленки органического материала, которая размещена на подложке из стекла. Электрические заряды от электронных схем, заставляют их светиться.

Светодиоды высокой яркости (HBLEDs), являются своего рода неорганическими светодиодами, которые начинают использоваться для освещения с большой светоотдачей. Ввиду их нагрева от значительных мощностей они должны быть установлены на радиаторах для удаления нежелательного тепла.

Из них уже изготовляют компактные люминесцентные лампочки и лампы. HBLEDs имеют больший уровень эффективности и более длительный срок службы, особенно когда они включаются, и выключаются много раз. Вообще, в мире выпускается более 30 миллиардов различных светодиодов, и их потребление растет семимильными шагами, поэтому всегда можно приобрести вот здесь светодиодные лампы оптом здесь — led-st.ru, и в розницу.

Напряжение, ток и типы светодиодов, от чего зависит их цвет

Полупроводниковые соединения в светодиодах классифицируют по валентности. Для арсенида галлия- галлий имеет валентность три, мышьяк валентность пять, их относят к называемой группе III-V полупроводниковых материалов. Диод излучает свет, когда его переход смещен в прямом направлении. При подаче напряжения на переход протекает ток, в результате рекомбинации возникают световые фотоны.

Было обнаружено, что большинство света возникает на площади перехода ближе к P-зоне, что отражено в конструкции светодиодов, направленной на минимум внутреннего поглощения. Цвет свечения во многом связан с конструкцией и типом используемых полупроводниковых материалов и приложенным напряжением. Чистый арсенид галлия высвобождает энергию в инфракрасной части спектра. Для светового излучения в видимом красном конце спектра алюминий арсенида галлия (AlGaAs). Добавление в полупроводник фосфора также может дать красный свет. Для других цветов используются другие материалы. Так фиолетовый цвет (длина волны 400-400-450 нм) получают с использованием в светодиоде индия нитрида галлия (InGaN) при напряжении 2,8-4,0 В, синий (450-500 нм) – с использованием такого же материала и добавлением карбида кремния (SiC) с напряжением 2,5-3,7 В, синий (500-570 нм) -фосфида галлия (GaP), алюминиевого фосфида индия галлия (AlGaInP), алюминиевого фосфида галлия (AlGaP) при напряжении 1,9-4,0 В (на графиках по горизонтали напряжение на переходе, по вертикали- рабочий ток, каждому графику соответствует цвет).

Напряжение, ток и типы светодиодов, от чего зависит их цвет

Светодиоды должны включаться с использованием ограничивающего ток через него резистора. Резистор должен быть рассчитан на требуемый уровень тока по закону Ома. Для многих светодиодов рабочий ток составляет около 20 мА, при меньшем токе свет будет тусклее. При большем токе светодиод сразу или быстрее выйдет из строя. При расчете тока учитывают напряжение на светодиоде – в прямосмещенном состоянии оно составляет чуть более вольта, хотя точное напряжение зависит от диода и, в частности его цвета.

Обычно красный светодиод имеет прямое напряжение чуть менее 2 вольт, и около 2,5 вольт для зеленого или желтого цвета. Светодиоды чаще всего бывают на рабочее напряжение 3 В и 12 В, но есть и на другие напряжения. О напряжении светодиода всегда говорит продавец.

При прикладывании напряжения обратной полярности, светодиод часто пробивается и выходит из строя. Поэтому защитить его от этого можно обычным дополнительным диодом, или специальной простейшей схемой. Либо надо просто быть внимательным при подключении светодиода, сохраняя его полярность, узнав о ней у продавца или в характеристиках. На схеме, к верхнему выводу прикладывается «+» питания.

Первый зарегистрированный эффект свечения светодиода был зафиксирован еще в начале ХХ века. В 1907 г. британский инженер по имени HJ Round, работавший у Маркони, провел некоторые эксперименты с использованием кристаллических детекторов, и в итоге получил их свечение. Результаты исследований он опубликовал в 1907 году в журнале Electrical World. Дальнейшие успехи были связаны с теоретическими и практическими исследованиями русского инженера, работавшего в медуниверситете, выходца из дворян Олега Владимировича Лосева. Он обнаружил, и исследовал излучение света от выпрямителя из оксида цинка и кристаллов карбида кремния. В результате своих наблюдений и исследований, Лосев опубликован ряд работ в технической прессе в период между 1924 и 1930 годами в СССР, а затем в других британских и немецких изданиях. С развитием материаловедения идея светового излучения диодов всплыла в 1951 году. В середине 1960-х. с использованием галлия, мышьяка и фосфора получили светодиоды, включая и красное свечение, но с эффективностью произвело на красный свет, и хотя эффективность устройства была низкой (обычно около 1 — 10 mcd при токе 20 мА), и они начали широко использоваться в качестве индикаторов на оборудовании. И пошло, и поехало, например, светодиодные ленты на каждом шагу на улицах, в магазинах, офисах и жилых домах.

Светодиоды дают полет мысли для самого разнообразного их применения. Так например, если дома есть старые неиспользуемые мобильные телефоны с устаревшими блоками питания для них, то всегда можно самому сделать, например, светодиодную подсветку — ночник из зарядного устройства.

Так мы кратко узнали, какое напряжение, ток и типы светодиодов, от чего зависит их цвет.

Изобретение- зарядка аккумулятора из суперконденсатора за считанные секунды.
Подписывайтесь.

Добавьте статью в закладки, чтобы вновь вернуться к ней, нажав кнопки Ctrl+D .Подписку на уведомления о публикации новых статей можно осуществить через форму «Подписаться на этот сайт» в боковой колонке страницы.

Внимание! АВТОРСТВО ВСЕХ СТАТЕЙ ЗАЩИЩЕНО. Копирование и публикация на других сайтах статьи или ее фрагментов без согласия автора или без активной гиперссылки ЗАПРЕЩЕНЫ.

Важные параметры и характеристики светодиодных ламп

Снижение розничных цен на светодиодные лампы привело к резкому росту их продаж. Однако ситуация с выбором качественного товара для многих по-прежнему остаётся тупиковой. Если купить лампочку накаливания было просто, с появлением КЛЛ задача не значительно усложнилась за счет более широкого ассортимента и оттенков излучаемого света. Параметры светодиодных ламп имеют значительно больше пунктов, чем у лампочек предыдущих поколений.

Но не стоит пугаться. Чтобы купить хорошую светодиодную лампу, углублённых познаний товара не понадобится. Достаточно один раз разобраться с основными параметрами, чтобы потом легко ориентироваться среди чисел, указанных на упаковке. Так что же нужно знать покупателю о светодиодных лампах, и на какие технические характеристики обратить внимание перед покупкой?

Основные характеристики

Следуя пословице: «Встречают по одёжке…» достаточно взять в руки коробку с лампочкой, чтобы ознакомиться с её основными техническими характеристиками. Обратить внимание следует не на крупные яркие цифры, а на напечатанное мелким шрифтом описание из 10 и более позиций.

Световой поток

Во времена, когда лампа накаливания была источником света №1, понятие светового потока мало кого интересовало. Яркость свечения определялась номинальной мощностью лампочки. С появлением светодиодов мощность потребления источников света снизилась в разы, а КПД вырос. За счет этого появилась экономия, о которой так часто напоминают рекламные ролики.

Световой поток (Ф, лм или lm) – величина, которая указывает на количество световой энергии, отдаваемой осветительным прибором. Опираясь на значение светового потока можно легко подобрать замену существующей лампочке со спиралью. Для этого можно воспользоваться нижеприведенной таблицей соответствия. график соответствия мощности и светового потока[block id=”6″]Наравне со световым потоком часто можно встретить понятие «световая отдача». Её определяют как отношение светового потока к потребляемой мощности и измеряют в лм/Вт. Данная характеристика более полно отражает эффективность источника излучения. Например, светодиодная лампа нейтрального света мощностью 10 Вт излучает световой поток примерно в 900-950 лм. Значит, её светоотдача будет равна 90-95 лм/Вт. Это примерно в 7,5 раз больше, чем у аналога со спиралью в 75 Вт с таким же световым потоком.

Бывает, что после замены лампы накаливания на светодиодную её яркость оказывается ниже заявленной. Первая причина такого явления – установка дешёвых китайских светодиодов. Вторая – заниженная мощность потребления. Эти обе причины говорят о товаре низкого качества.

Также величина светового потока зависит от цветовой температуры. В случае со светодиодами принято указывать световой поток для нейтрального света (4500°K). Чем выше цветовая температура, тем больше световой поток и наоборот. Разница в светоотдаче между однотипными светодиодными лампами теплого (2700°K) и холодного (5300°K) свечения может достигать 20%.цветовая температура[block id=”7″]

Мощность

Мощность потребления светодиодной лампы (P, Вт) – вторая по важности техническая характеристика, которая показывает на то, сколько электроэнергии потребляет светодиодная лампа за 1 час. Суммарное энергопотребление складывается из мощности светодиодов и мощности драйвера. Наиболее востребованы в наше время led осветительные приборы мощностью 5-13 Вт, что соответствует 40-100 ваттным лампам с нитью накала.

Качественные драйвера импульсного типа потребляют не более 10% энергии от общей мощности.

В качестве рекламы производители часто пользуются понятием «Эквивалентная мощность», которая выражается в надписи на упаковке наподобие 10 Вт=75 Вт. Это означает, что светодиодную лампу в 10 Вт можно вкрутить вместо обычной «груши» в 75 Вт, не потеряв при этом в яркости. Разнице в 7-8 раз можно верить. Но если на коробке красуется надпись вроде 6 Вт=60 Вт, то зачастую это не более чем рекламный трюк, рассчитанный на рядового покупателя. Это не значит, что изделие плохого качества, но реальная светоотдача будет, скорее всего, совпадать с лампой накаливания не в 60, а гораздо меньше.

Напряжение и частота питания

Напряжение питания (U, В) принято указывать на коробке в виде диапазона, в пределах которого производитель гарантирует нормальную работу изделия. Например, параметр 176–264В свидетельствует о том, что лампочка уверенно справится с любыми перепадами сетевого напряжения без существенной потери яркости.

Как правило, светодиодная лампа со встроенным токовым драйвером имеет широкий диапазон входных напряжений.

Если источник питания не содержит качественного стабилизатора, то перепады напряжения в сети питания будут сильно сказываться на светоотдаче и влиять на качество освещения. В России наибольшее распространение имеют led-лампы с питанием от сети переменного тока 230В частотой 50/60 Гц и от сети постоянного тока 12В.

Тип цоколя

Размер цоколя необходимо знать для того, чтобы подобрать лампочку в соответствии с существующим патроном в светильнике. Основная масса светодиодных ламп выпускается под резьбовой цоколь Е14 и Е27, которые являются стандартом для настенных, настольных и потолочных светильников советского образца. Не редкость светодиодные лампы с цоколем GU4, GU5.3, которые пришли на смену галогенным лампочкам, установленным в точечных светильниках и китайских люстрах с пультом дистанционного управления.основные виды цоколей

Цветовая температура

Цветовая температура (TC, °K) указывает на оттенок излучаемого света. Применительно к светодиодным лампам белого свечения всю шкалу условно делят на три части: с тёплым, нейтральным и холодным светом. При выборе следует учесть, что тёплые тона (2700-3500°K) успокаивают и располагают к уюту, а холодные (от 5300°K) бодрят и возбуждают нервную систему. график световых температурВ связи с этим для дома рекомендуется использовать тёплого свечения, а на кухне, в ванной и для работы – нейтрального. Светильники на светодиодах с TC≥5300°K пригодны только для выполнения специфической работы и в качестве аварийного освещения.таблица цветовой температуры

Угол рассеивания

По углу рассеивания можно судить о распространении светового потока в пространстве. Данный показатель зависит от конструкции рассеивателя и расположения светодиодов. Нормой для современных ламп широкого применения является значение ≥210°. Для эффективной работы с мелкими деталями лучше купить лампу с углом рассеивания 120° и установить её в настольный светильник.угол рассеивания

Возможность диммирования

Возможность диммирования (управление яркостью освещения) светодиодной лампы подразумевает её корректную работу от светорегулятора (диммера). Диммируемые лампы стоят дороже, так как их электронный блок имеет более сложное устройство. Обычная led-лампочка при подключении к регулятору света не станет работать или будет моргать.

Коэффициент пульсации

Коэффициент пульсации (Кп) не всегда приводится в перечне характеристик, несмотря на то, что имеет первостепенное значение и оказывает влияние на здоровье. Необходимость в измерении данного параметра возникла ввиду наличия в лампе электронного блока и высокого отклика светодиодов. Низкокачественные источники питания не способны идеально сгладить пульсации выходного сигнала, в результате чего светодиоды начинают мерцать с некоторой частотой.формула коэффициента пульсации

Коэффициент пульсации светодиодных ламп с питанием от сети стабильного постоянного тока равен нулю.

Наиболее качественными принято считать светодиодные лампы с Кп ниже 20%. В моделях с драйвером тока коэффициент пульсаций не превышает 1%. Определить данный параметр на практике несложно с помощью осциллографа. Для этого нужно измерить амплитуду переменной составляющей сигнала на светодиодах и разделить её на напряжение, измеренное на выходе блока питания.

По частоте переменного сигнала в нагрузке можно определить тип применённого драйвера.

Диапазон рабочих температур

Следует внимательно отнестись к данной характеристике, если предполагается эксплуатировать светодиодную лампочку в нестандартных условиях: на улице, в производственных цехах. Некоторые модели способны корректно работать только в узком диапазоне температур.

Индекс цветопередачи

С помощью индекса цветопередачи (CRI или Ra) можно оценить, насколько естественным виден цвет предметов, освещённых светодиодной лампой. Хорошим считается Ra≥70.

Степень защиты от влаги и пыли

Этот параметр выражается в виде обозначения IPXX, где ХХ – две цифры, указывающие на степень защиты от твёрдых предметов и воды. Его можно не обнаружить в перечне характеристик, если лампа предназначена исключительно для использования внутри помещений. степень защиты

Дополнительные параметры

Срок службы изделия

Срок службы – весьма абстрактная характеристика светодиодной лампы. Дело в том, что под сроком службы производитель понимает общее время работы светодиодов, а не лампы. При этом наработка на отказ остальных деталей схемы остаётся под большим сомнением. Кроме того, на время работы влияет качество сборки корпуса и пайки радиоэлементов. К тому же не один производитель, в связи с долгим сроком службы, не проводит полноценных тестов по деградации светодиодов в лампе. Так что заявленные 30 тыс. часов и более – это теоретический показатель, а не реальный параметр.

Тип колбы

Несмотря на то что тип колбы для многих не является критичным техническим параметром, во многих моделях его указывают в первой строчке. Обычно тип и маркировка колбы выражается в цифробуквенном коде.тип колб

Масса

Весом изделия редко кто интересуется в момент покупки, но для некоторых облегчённых светильников он имеет значение.

Габариты

Сколько производителей – столько и корпусов, отличающихся внешним видом и габаритами. Например, светодиодные лампы мощностью 10 Вт от разных изготовителей могут отличаться в длину и ширину более чем на 1 см. Выбирая новую led лампу для освещения, не стоит забывать о том, что она должна поместиться в уже имеющийся светильник.

Рынок светодиодной продукции продолжает динамично развиваться, вследствие чего характеристики ламп изменяются и совершенствуются. Надеемся, что в ближайшее время применительно к светодиодным лампам будут выработаны стандарты качества, которые упростят покупателю задачу с выбором. Пока же собственные знания – это главная опора при выборе и покупке.

Разоблачаем мировой заговор или как измерить световой поток светодиодов на коленке

Все вы, наверное, слышали про мировой заговор. Масоны, инопланетяне и евреи Производители электрических лампочек вступили в него сто лет назад, чтобы лампочки не служили вечно, а перегорали каждый месяц и жрали уйму электричества. И только сейчас путы заговора разорваны и лампочковые магнаты раздавлены великой империей Китая, завалившей весь мир вечными и экономичными светодиодными лампами. Но не расслабляйтесь – мировой заговор не сдается. Теперь он явился в виде Великой Светодиодной Ложи Лажи Лжи. Короче, все врут (с).

Шутки шутками, а в той или иной степени врут, наверное, все производители LED-светотехники. Кто-то нагло и откровенно, кто-то так, слегка подвирает – но так или иначе, кажется, нет ни одной фирмы, которая не завышала бы параметров своих изделий. Разными способами – кто-то просто пишет красивые цифры от фонаря, порой запредельные с точки зрения здравого смысла. А кто-то – просто пишет характеристики вполне правдивые, но полученные в условиях, далеких от реальных условий эксплуатации. Например, световой поток, измеренный при температуре 25°С в импульсном режиме. Так или иначе, а 15-20% «припуска на вранье» давать придется.

Освещенность измерить просто, световой поток – сложно и дорого. Необходимо собрать весь свет, испущенный лампой и в равной степени учесть лучи по всем направлениям. То есть, нужен фотоприемник в виде полой сферы с одинаковой светочувствительностью каждого участка ее поверхности. Изготовление такой фотометрической сферы и ее последующая калибровка – задача весьма непростая.

Другой подход – по точкам промерить диаграмму направленности источника света и проинтегрировать по всей сфере. Но и это непросто: надо иметь солидных размеров темное помещение с темными стенами. И гониометрическая головка с двумя осями нужна, желательно с автоматическим приводом, чтобы не задолбаться вручную выставлять углы для каждой из нескольких сотен точек.

Впрочем, есть пара частных случаев, которые часто встречаются на практике и для которых можно ограничиться одним измерением. Об одном из них я и хочу поведать хабрасообществу.

Этот частный случай – плоский косинусный излучатель. Косинусным называется такой излучатель, яркость которого не зависит от угла между нормалью к его поверхности и направлением на наблюдателя. Диаграмма направленности такого излучателя определяется исключительно геометрией – а именно видимой площадью поверхности. И для плоского косинусного излучателя существует простое соотношение между световым потоком и силой света в направлении нормали к плоскости:

.

То есть достаточно измерить люксметром освещенность в метре от источника света и умножить ее на 3,14 – и мы уже имеем величину светового потока (либо, если расстояние не равно метру, его придется учесть по закону обратных квадратов). Разумеется, источник света должен быть много меньше расстояния до люксметра – иначе закон обратных квадратов работать не будет и результат измерения будет завышен.

Какие же источники света можно с достаточной для практики точностью считать плоскими косинусными излучателями? Это практически любые белые осветительные светодиоды без линзы и плоские сборки на их основе. Всевозможные китайские 5730, 2835, 5050, 3030 и прочие, что встречаются обычно в светодиодных лампах с алиэкспресса, а также продаются там же отдельно в катушках за копейки – это оно. А также матрицы. И китайские квадратные на 10 ватт, и Cree CXA и CXB. А вот для любых светодиодов с линзой, а также для светодиодов без люминофора (например, RGB) такой метод не годится — их диаграмма направленности существенно отличается от косинусной. Плоские светильники, встраиваемые в потолок и закрытые молочным стеклом, также неплохо соответствуют этой модели.

Итак, давайте уже что-нибудь измерим. В качестве подопытных кроликов у нас сегодня:

1. Сборка китайская на 90 ватт из 156 светодиодов 5730 (в каждом по два кристалла 13х30 mil) со встроенным драйвером на CYT3000B. По заверениям китайцев, должна давать 9200 лм.


Потребляемая мощность по приборам — 85 Вт, на ней и остаемся.

2. Матрица CXA2530, новая версия, 3000 кельвин, Ra>80. Световой поток при 800 мА и 85°С согласно даташиту — не менее 3440 лм, а при 25°С (такой температуры не бывает, если только не захолодить сам светодиод до температуры ниже нуля — тепловое сопротивление не даст) — не менее 4150 лм.


Заводим на токе 800 мА, потребляемая мощность составила 28,64 Вт.

3. HPR20D-19K20 — древняя, как мамонт (покупалась году в 2010, если не раньше) матрица на 20 ватт фирмы HueyJann, похожая на нынешние 10-ваттные матрицы, отличается от них большим количеством кристаллов под люминофором — их 16 штук вместо девяти (4 штуки последовательно в каждой из четырех параллельно включенных цепочек). Заявлено 1830 лм при токе 1,7 А, реально на глаз не ярче, чем CXA2011 с подводимой мощностью 11 Вт.

Запускаем на паспортном токе 1,7 А, напряжение составило 12,2 В, мощность 20,74 Вт.

Освещенность измеряем люксметром UT382 (Uni-T), на «глазок» которого надеваем бленду из черной бумаги, чтобы не ловил отраженный от стен свет в неподготовленном помещении. Расстояние во всех случаях — метр. Результаты в таблице.

Выходит, что световой поток китайской сборки соответствует заявленному (в пределах погрешности люксметра), у Cree’шной матрицы тоже все в пределах даташита (учитывая, что температура ее неизвестна), а вот у HueyJann’овской матрицы обещанных люменов нет и близко.

Но что-то затерзали меня смутные сомнения: 9000 с хвостиком люмен при 85 ваттах, учитывая КПД драйвера 80% и при том, что светодиоды работают далеко не в облегченном режиме, по полватта на корпус, а пиковый ток вдвое больше среднего (никакого фильтрующего конденсатора у этих плат нет) — это очень даже круто. Вдобавок как-то не видно от этой сборки значительно большей освещенности в комнате по сравнению с люстрой, в которой пять лампочек по 950 лм (энергосберегайки).

Подозрение падает на люксметр — не все из них адекватно измеряют светодиодные источники. Те из них, что сделаны на базе фотодиода BPW21R, имеют очень приблизительное соответствие спектральной чувствительности стандартной кривой видности, и относительная чувствительность к излучению 450 нм (это длина волны, соответствующая синему пику, имеющемуся в спектре почти всех белых светодиодов) превышает относительную чувствительность глаза в этой области в несколько раз. В данном приборе фотоприемник другой, что и являлось одним из критериев при выборе прибора, но все же сходим в охрану труда и возьмем другой люксметр. Это оказался ТКА-Люкс. В его методике поверки содержится проверка спектральной характеристики, то есть она должна соответствовать кривой видности с нормируемой погрешностью. Повторяем измерения с ним. Вот результаты:

Ну что тут сказать? Врут не только производители светодиодных ламп, но и мой люксметр. Причем врет, как и ожидалось, по-разному для разных светодиодов. Для матрицы CXA2530 разница с профессиональным аппаратом минимальная, скорее в пределах погрешности обоих приборов. Но у этой матрицы провал в спектре почти незаметен, если смотреть через компакт-диск (реально он, конечно, есть). А вот остальные подопытные «провалились» прилично. И теперь прекрасно видно, что до заявленных люменов они не дотягивают более чем заметно: китайская 90-ваттная сборка — на 25%, а матрица HPR20D-19K20 — почти вдвое.

Отсюда можно сделать следующие выводы:


  1. Да, описанным образом можно оценить световой поток, испускаемый светодиодами, матрицами и сборками (в пределах описанного частного случая).
  2. С измерением освещенности от светодиодов люксметром надо быть осторожным и убедиться, что он имеет корректную кривую спектральной чувствительности. Ибо врут все (с).
  3. Если измерения показывают, что китайским изделием достигнуты заявленные характеристики, значит, вполне вероятно, что прибор проградуирован в китайских люксах:).

Если вам захочется таким же образом оценить световой поток светодиодной лампочки с полусферическим рассеивателем, нужно снять рассеиватель. Под ним скорее всего будут вполне подходящие светодиоды. Но сам рассеиватель вносит потери 15-20 и более процентов светового потока.

Да, и последнее. Описанная методика ни в коей мере не является ни метрологически строгой, ни точной. Она оценочная и не более того. Именно поэтому я не привел здесь анализа погрешностей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *