Rgb светодиодная лента – Светодиодная RGB лента с контроллером и пультом – схема подключения и монтаж

Содержание

Как подключить светодиодную RGB ленту

что необходимо для подключения светодиодной ленты rgb 5м или 10мПри подключении обычной монохромной ленты следует придерживаться трех основных правил:

  • подключение выполняется параллельно отрезками не более 5 метров
  • лента монтируется на алюминиевый профиль
  • блок питания выбирается всегда с запасом по мощности

Эти же правила полностью применимы и для многоцветной RGB ленты. Однако здесь есть некоторые особенности. Связаны они с использованием в схеме подключения RGB контроллера.

пульты управления и контроллер для rgb светодиодной лентыКроме этого, обязательно запомните, что полноценную rgb подсветку можно изготовить на основании светодиодов SMD 5050. Именно в них реализована возможность менять цвета в одном источнике света.

Достигается это за счет того, что светодиод собран из трех кристаллов. Во всех остальных видах SMD 2835, SMD 3528 один светодиод может светить только одним цветом.многоцветной светодиод SMD RGB

Из-за этого в подсветке могут возникать небольшие провалы освещенности, когда соседние светодиоды попросту не будут гореть и полоса света не будет выглядеть цельной и сплошной. Примеры и недостатки таких моделей можно посмотреть в статьях ”Характеристики светодиодных лент SMD 3528” и ”Отличия светодиодной ленты SMD 2835 от SMD 3528”.

участки с синим цветом в RGB ленте SMD2835RGB контроллер подключается после блока питания. С его помощью можно менять не только цвета, но и яркость освещения, разные режимы работы, интенсивность смены расцветки и т.д.

Для режима светомузыки, когда цвета бегают по разным сторонам и сменяют друг друга, потребуются специальные контроллеры. Называются они DMX.контроллер DMX для эффекта бегущей волны в светодиодной ленте

Напрямую через контроллер можно подключать определенную длину светодиодной ленты. Максимум это 5 метров или 10 метров при параллельном подключении двух отрезков по пять.схема подключения 5м и 10м RGB ленты напрямую через контроллер без усилителя

 

подключение rgb светодиодной ленты через контроллерА что делать, если разноцветная подсветка у вас более 10 метров? Для монохромного варианта все решается параллельным подключением отдельных кусков. Например, подключаете 3 участка по 5м каждый и имеете полноценную подсветку длиной 15м.схема подключение 15м светодиодной монохромной ленты от блока питания

Для RGB ленты параллельно спаять и соединить 5-ти метровые участки можно, однако с непосредственным подключением к одному контроллеру имеются нюансы.

Схема подключения светодиодной ленты RGB длиной 5м или 10м

разноцветная подсветка rgb светодиодной лентойДля начала рассмотрим вариант, когда у вас общая длина светодиодной подсветки всего 5м или 10м, то есть две цельные ленты соединенные параллельно по 5м каждая. Что необходимо в этом случае?

  • блок питания, преобразующий 220В из сети в 12 или 24В необходимые для работы подсветки

открытый блок питания для светодиодных лентВсе нюансы по его выбору, регулировке напряжения и особенностям подключения можно узнать из статьи ”Как правильно выбрать блок питания для светодиодной ленты”.

111-blok

пульт и контроллер для rgb лентыЕго в отличие от блока питания можно подбирать без запаса по мощности, что называется впритык. Главное правильно рассчитать мощность самой ленты.

Например, если 1м потребляет 14,4Вт (данные можно найти на упаковке или из таблиц, согласно разновидности светодиодов), то 10м будут соответственно “кушать” 144Вт. Именно на такую мощность и покупаете контроллер.сравнение технических характеристик светодиодной ленты SMD 5050 на 30,60,72,120 диодов

Как все это правильно подключить? Во-первых, 220В нужно подать на сам блок питания. Обычно слева на нем имеются две клеммы с маркировкой L(фаза), N(ноль) и заземление. Здесь полярность L и N соблюдать не обязательно.14

Далее по схеме идет контроллер. У него имеется ряд клемм:

  • Light с контактами BGR V+

Расшифровываются они как:
B (blue) – синий

G (green) – зеленый

R (red) – красный

+V – общий плюс на светодиодной ленте. Непосредственно на ленте он может быть подписан как ”+12” или просто ”+”. Все остальные три контакта rgb являются минусовыми.пайка проводов к светодиодной ленте rgb

  • Power с контактами “+” и ”-”

В отличие от монохромной ленты у RGB варианта не два контакта, а четыре. А иногда и все пять!

Пятый отвечает за белый свет, так как нормального белого естественного освещения получить от сочетания rgb цветов не получится. Называются такие светодиодные ленты RGBW или RGBWW.светодиодная лента rgbw с белым светом

Поэтому заранее уточняйте, сколько контактов для пайки проводов имеет лента и покупайте соответствующий контроллер. Особенно это актуально при покупках через интернет магазины.

К контактам Power подается напряжение 12 или 24В от блока питания.подключение усилителя для rgb разноцветной ленты от блока питания 12В и 24В

Здесь соблюдать полярность уже строго обязательно.

Ищите на блоке клеммы с надписью ”V+” и “V-“. Вместо “V-“ иногда пишут “COM”.подключение питания 12в от блока питания до контроллера

Далее заводите в клеммы контроллера три припаянных к ленте RGB проводка, каждый из которых отвечает за свой цвет. R подключаете к R, G к G и так далее.

Если перепутаете порядок, подключите красный к зеленому или наоборот, ничего страшного не случится, просто будут путаться цвета на пульту управления.как подключить провода к контроллеру rgb разноцветной светодиодной ленты

Кстати, светодиодную ленту RGB в крайних случаях можно подключать и вовсе без контроллера, напрямую к блоку.

Для этого нужно скрутить все три провода rgb в один и подать на него минус, а на второй проводок плюс.как подключить rgb светодиодную ленту напрямую без контроллера

Правда в этом случае, ни о какой разноцветной подсветке и речи быть не может. Однако как один из вариантов освещения, при выходе из строя контроллера, рассматривать можно.

При правильном подключении RGB ленты по первому варианту, у вас должна быть последовательность: 1Блок питания
2Контроллер
3Светодиодная лента RGBсхема подключения напрямую от контроллера rgb светодиодной ленты

подключение rgb цветной ленты от одного контроллера на пульту дистанционного управления

схема подключения rgb светодиодной ленты от wifi контроллера

 

RGB лента длиной 15-20 метров

Если нужно подключить 15, 20 метров или более, такой вариант только с одним контроллером уже не подойдет. Есть два выхода:

  • использовать два контроллера
  • использовать RGB усилитель

Первый вариант неудобен более высокими затратами. А во-вторых, у вас будет два пульта управления, каждый из которых отвечает за различные участки ленты. И как вы их синхронизируете, тот еще вопрос.пульт дистанционного управления подсветки rgb

Поэтому лучший вариант, когда все управляется от одного контроллера и с одного пульта. Это можно легко реализовать при помощи rgb усилителя.разновидности rgb усилителей

Из названия понятно, что его предназначение усиливать сигнал от контроллера. Правда некоторые заблуждаются, полагая, что он нужен для более яркого свечения ленты. И его именно с этой целью можно использовать даже для 5-ти метровых участков. Это не так.

Выбирается он по мощности не всей длины светодиодной ленты, а только того участка, который к нему и подключается, помимо первых 5 или 10 метров.подключение rgb ленты с контроллером и усилителем

Схема подключения усилителя

У усилителя есть входные-input и выходные-output клеммы. На входе и выходе те же контакты, что и у контроллера – общий плюс и цвета.rgb усилитель и клеммы

rgb усилитель и клеммыТакже присутствуют и клеммы подключения питания:

Напряжение 12-24В можно подавать как от дополнительного блока, так и от общего, если позволяет его мощность.подключение rgb светодиодной ленты от двух блоков питания

Для подключения, общие концы предыдущего отрезка светодиодной ленты, заводите во входные клеммы усилителя.

Далее подсоединяете выход. Вставляете в RGBV+ разъемы, провода от дополнительного участка светодиодной ленты.

После этого под винты VDD и GND заводите проводники питания от блока.подробная схема подключения 15м rgb ленты от двух блоков питания и усилителя

Опять же полярность здесь строго соблюдаете! VDD – это плюс, GND – минус.

В итоге у вас должна получиться последовательность: 1Блок питания
2Контроллер
3Светодиодная лента №1
4Усилитель
5Светодиодная лента №2

 

последовательность подключения блок питания контроллер лента усилительСобранная подсветка по такой схеме будет работать и управляться с одного пульта.

Если вам нужно подключить еще 5-10 метров ленты, в схему добавляется еще один усилитель, а возможно и дополнительный блок питания (зависит от мощности освещения).схема подключения 15-20 метров rgb ленты и нескольких блоков питания и усилителей

Только имейте в виду, что параллелить напрямую между собой сами блоки питания нельзя. Делать это нужно через диодный мост. Поэтому они должны быть разделены между собой через отдельные участки лент.параллельное подключение двух блоков питания светодиодных лент

Таким образом можно собрать разноцветную подсветку любой длины под ваши запросы. Главное найти место для размещения всего этого оборудования.где разместить контроллер и усилитель от rgb ленты

Когда места не хватает, вместо большого усилителя можно использовать микро модель.микроусилитель для светодиодных лент

Он напоминает из себя что-то типа переходника, и размер у него соответствующий. При этом со своей задачей усиления сигнала справляется хорошо.усилитель сигнала для rgb лент мини модель

Кроме этого, его можно использовать, если вам не хватает мощности вашего контролера. Например, мощность всей светодиодной ленты 110Вт, а контроллера всего 70Вт.

Чтобы не менять его, просто докупаете такой мини усилитель, последовательно соединяете два элемента и наслаждаетесь освещением.

Кстати, такого же миниатюрного размера может быть и сам контроллер.подключение мини контроллера и мини усилителя для rgb светодиодной ленты 15м и 20м

Ошибки подключения

1Неправильная последовательность:

 

  • контроллер — блок — лента (должно быть: блок — контроллер — лента) или
  • блок — усилитель — контроллер — лента (правильно: блок — контроллер — усилитель — лента)
2С обратной стороны подложки светодиодной ленты, в местах где дорожки отдельных кусков соединяются между собой, есть места заводской пайки.

 

места спайки двух кусков светодиодной лентыТак вот, при наклеивании ленты и срыве скотча, эти самые места могут оголиться. Такое зачастую происходит на изделиях эконом класса.из-за чего может сгореть светодиодная лента

В итоге, когда вы ленту наклеите на алюминиевый профиль, вы тем самым просто закоротите все 4 дорожки между собой и сожгете свою подсветку. Поэтому всегда проверяйте обратную сторону, перед непосредственным процессом наклеивания.

3Подключение второго участка ленты (свыше 10 метров) к блоку питания, который был выбран только из расчета мощности первого участка, полагаясь на мощность усилителя.

 

подключение rgb ленты с контроллером и усилителемДаже если для блока и был выбран запас в 30%, в конечном итоге работа на износ рано или поздно выведет из строя или блок или светодиоды.

Как подключить светодиодную ленту RGB ленту с контроллером и без?

Светодиодные ленты, позволяющие получать разнообразные световые эффекты, находят широкое применение в создании различных вариантов освещения и подсветки в быту, офисах, объектах культурного назначения и на улицах.

Светодиодная лента представляет собой гнущуюся плату, на которой находятся светодиоды.

Длина диодных лент обычно составляет пять метров, ширина от восьми до двадцати миллиметров.

Светодиодные лентыСветодиодные ленты

В продажу они поступают намотанными на пластмассовые бобины.

RGB-светодиодRGB-светодиод

Светодиодная лента разделяется на отдельные отрезки, состоящие из нескольких диодов. Если возникает необходимость откорректировать длину RGB-светодиодной ленты, присутствует возможность разъединить ее вдоль полоски, проходящей через контактные точки подключения и помеченной изображением ножниц.

Количество элементов на этом фрагменте зависит от типа данного изделия, и после подключения его к источнику питания он сохранит работоспособность.

На картинке видно, где можно разрезать rgb лентуНа картинке видно, где можно разрезать RGB-ленту

Объединить кусочки ленты можно посредством коннектора. Для этого нужно поместить концы с контактами в разъем и закрыть крышку.

Объединение кусочков ленты поредством коннектораОбъединение кусочков ленты посредством коннектора

При этом нужно соблюдать полярность.

Также можно произвести это соединение, используя пайку. Провода нужно заизолировать.

Соединение проводов с помощью пайкиСоединение проводов с помощью пайкиСхема рабочего фрагмента rgb лентыСхема рабочего фрагмента RGB-ленты

Наиболее распространено применение диодных лент с диодами SMD5050.

Для того чтобы подключить RGB-ленту, необходимо предусмотреть блок питания, контроллер и (при необходимости подсоединения нескольких диодных лент) усилитель.

Чтобы подключить RGB-ленту, надо грамотно выбрать блок питания согласно ее мощности и напряжению. Соединение этой ленты с входным напряжением сети 220 В (без блока питания) приведет к ее мгновенному выходу из строя.

Светодиодные ленты рассчитаны на работу от источника постоянного тока напряжением 12 В или 24 В. Этикетки ленты содержат информацию о рабочих параметрах.

В качестве мощности, которую потребляет лента, всегда указывается та, которая приходится на законченный фрагмент длиной в 1 метр. Потребляемый каждой цветовой цепью ток всегда можно найти в справочниках.

Если не известны никакие (кроме напряжения питания) параметры ленты, можно все рассчитать. Разобраться с методикой расчета потребляемого тока и выбора блока питания можно на примере условно неизвестного типоразмера цветной светодиодной ленты длиной пять метров, работающей при напряжении 12 В.

Чтобы определить все неизвестные параметры, сначала нужно измерить длину сторон светодиода.

Предположим, она составляет 5 на 5 миллиметров. В справочниках по светодиодам такие геометрические размеры соответствуют светодиоду RGB SMD5050. Далее необходимо выяснить, какое число их расположено на 1 м. Допустим, что их 30 шт.

На один из трех кристаллов светодиода приходится ток 0,02 А, значит, весь светодиод, состоящий из трех кристалликов, потребляет 0,06 А.

Количество светодиодов на одном расчетном отрезке – 30 штук. Следовательно, перемножив полученную силу тока 0,06 А на 30 штук, получится 1,8 А (0,06 х 30 = 1,8).

Но так как между каждой тройкой диодов выполнено последовательное соединение, ток, проходящий через 1 метр ленты, меньше в 3 раза и составляет 0,06 А.

Соответственно, ток, потребляемый всей лентой, равен 3 А (0,06 А х 5 м = 3 А).

Путем проведения несложных расчетов было установлено, что в рассмотренном выше случае необходим источник питания постоянного тока с напряжением на выходе 12 В, поддерживающий нагрузку более 3 А (с запасом около 30 процентов). Поэтому подходящим вариантом оказался адаптер APO12-5075 UV, рассчитанный на нагрузку до 5 А.

Если напряжение на выходе блока питания будет строго соответствовать расчетному, то источник питания в этом случае все время будет работать в крайне тяжелом режиме. Поэтому срок службы его значительно сократится.

Контроллер необходим для подключения светодиодных лент и служит для регулирования цвета и яркости устройства. Подключаться он должен с одной стороны к блоку питания, со второй – к цепи светодиодов.

При необходимости может использоваться схема подключения RGB-ленты непосредственно к блоку питания (без контроллера). Для этого нужно к плюсовому контакту драйвера подключить плюсовой провод ленты и к минусовому контакту прикрепить сразу три цветовых провода, соединив их вместе.

Но при таком подключении светодиодной RGB-ленты можно будет получить только один цвет свечения светодиодов без возможности его регулирования.

Расчетным путем было получено, что суммарный ток, потребляемый всей лентой, составляет 3 А. Но ток каждой цветовой дорожки в три раза меньше этой величины.

Поэтому чтобы светодиодная лента работала в нормальном режиме, нужно, чтобы ток на выходных контактах контроллера (которые предназначены для подключения цветовых полос R, G, B) составлял третью часть от поступающего с блока питания тока.

Отсюда следует, что в рассматриваемом нами случае нужно применить контроллер напряжением на 12 В и током нагрузки 1 А на каналах R, G и B.

В соответствии с этими параметрами можно выбрать контроллер LN-IR24B, который оснащен пультом дистанционного управления, работающим в радиочастотном диапазоне.

Весь набор (подобранный расчётным путём) комплектующих, обеспечивающих работу LED ленты в штатном режимеВесь набор (подобранный расчетным путем) комплектующих, обеспечивающих работу LED-ленты в штатном режиме

Ниже представлена схема подключения светодиодной RGB-ленты длиной 5 метров через блок питания и контроллер.

Схема подключения светодиодной rgb ленты длиной 5 метров через блок питания и контроллер.

L – контакт для подачи фазного напряжения сети 220 В;

N – контакт для подсоединения нулевого провода;

PE – контакт для заземляющего провода.

Провода цветовых каналов R (красный), G (зеленый), B (синий) подключаются к клеммам, обозначенным на контроллере соответствующими буквами.

При несоблюдении этого условия светодиоды не потеряют способность цветового свечения, но при попытке настроить желаемую цветовую гамму будут получаться цвета, не соответствующие разметке, нанесенной на пульт управления.

Входное напряжение сети 220 В подается на контакты L и N блока питания.

Выпрямленное и преобразованное напряжение 12 В выходит на контакты +V и –V блока питания, после чего через соединяющие провода оно поступает на одноименные входные контакты контроллера.

На выход этого прибора выведены три линии с обозначениями R, G и B, которые служат для подключения цветовых каналов светодиодной ленты к контроллеру.

Контакт +V – для общего плюсового провода.

Если мощности блока питания и контроллера позволяют подключить RGB-ленту длиной до десяти метров, это можно сделать, подсоединив к соответствующим выходным клеммам контроллера по два провода, идущих на 2 разные ленты, соединив таким образом их параллельно на контактах контроллера. То есть к одному контакту присоединяется сразу два провода. Но использовать такую схему не рекомендуется. В случае ошибки при расчете мощности блока питания и контроллера может не хватить на дополнительную ленту.

Схема подключения двух лент по 5 метров через один блок питания и контроллер. Эти две ленты подключены параллельно контроллеруСхема подключения двух лент по 5 метров через один блок питания и контроллер. Эти две ленты подключены параллельно контроллеруВнешний вид контроллера и подсоединяемых к нему проводов от двух rgb лентВнешний вид контроллера и подсоединяемых к нему проводов от двух RGB-лентВторой вариант подключения двух пятиметровых лент (с применением дополнительного блока питания и усилителя)Второй вариант подключения двух пятиметровых лент (с применением дополнительного блока питания и усилителя)

Последовательное подключение нескольких лент без использования дополнительного оборудования не применяется, потому что в результате падения напряжения на ленте наиболее удаленные от регулирующей аппаратуры участки будут светиться очень слабо или вовсе не будут.

Для подключения светодиодной ленты длиной от 5 метров необходимо на каждом участке использовать усилитель и дополнительный блок питания. Усилитель – это прибор, усиливающий сигнал контроллера.

Если мощности блока питания и контроллера не хватает для подключения двух и более лент, используется схема подключения с усилителями и добавляются дополнительные блоки питания, соответствующие параметрам каждой отдельной ленты.

Подключение четырёх rgb диодных лент с использованием своего усилителя и блока питания для каждой ленты. Здесь усилители присоединяются к контроллеру параллельноПодключение четырех RGB-диодных лент с использованием своего усилителя и блока питания для каждой ленты. Здесь усилители присоединяются к контроллеру параллельно

При наличии у контроллера резерва мощности (в пределах 30 процентов) имеется возможность создания цепи, исключающей применение усилителей. Каждая лента к контроллеру подключается параллельно и устанавливается общий для всех комплектующих мощный блок питания. Поэтому нужна принудительная вентиляция.

Это создает дискомфорт из-за шума, создаваемого вентилятором.

Прилагаемая схема разъясняет, как подключить светодиодную ленту параллельно-последовательно.

Схема подключения светодиодной ленты параллельно-последовательноСхема подключения светодиодной ленты параллельно-последовательно

Здесь параллельно к контроллеру подключена только первая RGB-лента.

Любая следующая присоединяется последовательно к предыдущей через усилитель.

Усиливающие приборы коммутируются с сетью 220 В через индивидуальные блоки питания.

Схемы подключения RGBW-лент аналогичны схемам соединения RGB-лент. Отличие заключается в необходимости применения RGBW-контроллера, у которого имеется дополнительный цветовой вывод «white» (белый). С помощью такой ленты можно создавать наиболее интересные цветовые решения.

Как подключить RGB LED ленту к контроллеру и блоку питания

Монохромные светодиодные ленты, светящиеся только красным — R, зеленым — G, синим — B или белым — CW цветом, как правило, подключаются непосредственно к источнику постоянного тока напряжением 12 В или 24 В. RGB светодиодную ленту, как и монохромные, тоже можно подключить к блоку питания постоянного тока, соединив выводы R, G и B между собой.

Но в таком случае будет упущена возможность реализации цветовых эффектов освещения, ради которых лента и была создана. Поэтому при установке цветных светодиодных лент, в разрыв цепи между блоком питания и лентой обычно устанавливают электронный контроллер. Он позволяет в автоматическом режиме изменять цвет и яркость свечения ленты в динамическом режиме по заданной с пульта дистанционного управления программе.

Схема подключения RGB светодиодной ленты

На фотографии изображена электрическая схема подключения RGB светодиодной ленты к сети 220 В. Блок питания (адаптер) преобразует переменное напряжение 220 В в напряжение постоянного тока 12 В, которое по двум проводам с соблюдением полярности подается на RGB контроллер. К контроллеру посредством четырех проводов в соответствии с маркировкой подключается светодиодная лента. Для удобства монтажа и ремонта светодиодного освещения узлы между собой соединяются с помощью разъемов.

Электрическая схема LED RGB светодиода SMD-5050

Для подключения, а тем более ремонта RGB светодиодной ленты на профессиональном уровне, необходимо представлять, как она устроена, и знать электрическую схему и распиновку применяемых в лентах светодиодов. На фотографии ниже представлен фрагмент RGB светодиодной ленты с нанесенной схемой распайки кристаллов светодиодов.

Электрическая схема светодиода smd 5050

Как видно на схеме, кристаллы в светодиоде электрически не связаны между собой. Три разноцветных кристалла в одном корпусе светодиода образуют триаду. Благодаря такой конструкции, управляя яркостью свечения каждого кристалла индивидуально можно получить бесконечное количество цветов свечения светодиода. На таком принципе управления цветом построены дисплеи сотовых телефонов, навигаторов, фотоаппаратов, компьютерных мониторов, телевизоров и многих других изделий.

Технические характеристики светодиода SMD-5050 приведены на странице сайта «Справочник по SMD светодиодам».

Электрическая схема LED RGB ленты на светодиодах SMD-5050

Разобравшись с устройством светодиода легко разобраться и с устройством светодиодной ленты. В верхней части картинки фотография работоспособного отрезка LED RGB ленты, а в нижней его электрическая схема.

Электрическая схема светодиодной ленты на smd 5050

Как видно из схемы, одноименные контактные площадки светодиодной ленты, находящиеся с ее правой и левой стороны электрически соединены между собой напрямую. Таким образом, обеспечивается возможность подачи питающего напряжения на ленту с любого конца и на следующий отрезок ленты при ее наращивании.

Кристаллы светодиодов VD1, VD2 и VD3 одинакового цвета свечения соединены последовательно. Для ограничения тока в каждой из цветовых цепей установлены токоограничивающие резисторы. Два из них номиналом 150 Ом, а один 300 Ом, в цепи кристаллов красного цвета. Резистор большего номинала установлен для выравнивания яркости всех цветов с учетом интенсивности излучения кристаллом светодиода и не одинаковой цветовой чувствительности человеческого глаза к разным цветам.

Как разрезать светодиодную ленту на отрезки

Как Вы уже наверно поняли, RGB светодиодная лента любой длины (относиться и к монохромным лентам), состоит из коротких самостоятельных отрезков, представляющих собой законченное изделие. Достаточно подать на контактные площадки напряжение питания и лента будет излучать свет. Для получения отрезка ленты требуемой длины элементарные отрезки соединяют между собой в соответствии с буквенной маркировкой.

Место резки светодиодной ленты

Обычно лента выпускается длиной пять метров. В случае необходимости ее можно укоротить, разрезав поперек по линии, нанесенной по центру контактных площадок между маркировкой, бывает, в этом месте дополнительно наносят символическое изображение ножниц. Иногда ленту приходится разрезать, чтобы установить под углом. В таком случае разрезанные одноименные контактные площадки соединяются между собой с помощью пайки отрезками провода.

Способы управления цветом свечения
RGB светодиодных лент

Есть два способа управления цветовым режимом работы RGB светодиодной ленты, с помощью трех выключателей или электронного устройства.

Принцип работы простейшего контроллера на выключателях

Рассмотрим принцип работы самого простого контроллера, на механических выключателях. В качестве выключателя для ручного управления свечением RGB ленты можно применить трех клавишный настенный выключатель, предназначенный для включения люстр и светильников в бытовую сеть 220 В. Электрическая схема подключения тогда будет иметь следующий вид.

Схема подключенная с выключателем

Резисторы R1-R3 служат для ограничения тока и их можно устанавливать в любом месте цепи питания кристаллов одного цвета. По этой схеме можно подключать RGB ленты, рассчитанные на напряжение питания как 12 В, так и 24 В.

Как видно из схемы, плюсовой вывод блока питания подключается непосредственно к плюсовому выводу светодиодной ленты, кот

Светодиодная RGB лента и несколько контроллеров

Некоторое время назад товарищ попросил меня написать обзор о его товаре. Да, не удивляйтесь, так тоже бывает 🙂
И вот у меня наконец то дошли руки и до этого товара. К сожалению ссылки на некоторые товары уже неактивны, но думаю что обзор все равно поможет понять «кто есть кто».

Вообще началась вся эта история с контроллерами и лентой еще летом. Случайно так вышло, что товарищ подумал что один из контроллеров работает через WiFi. По крайней мере (насколько я понял) так было заявлено у продавца. Ну и попутно дал мне разных других контроллеров чтобы сделать сравнительный обзор, что я и решил в итоге сделать.

Случайно вышло, что один из контроллеров не попал на фото, но в обзоре он будет.

К «умному» контроллеру я вернусь ближе к концу обзора, а пока расскажу о ленте.

Заказана была RGB лента. Это означает, что она содержит светодиоды трех цветов, красный, зеленый и синий.

Ну а если говорить точнее, то на ней установлены трехцветные светодиоды размера 5050. В каждом светодиоде находится три кристалла соответствующего цвета свечения.
Я не зря оговорился выше насчет светодиодов трех цветов, так как есть и такие ленты, там обычно светодиоды меньше, но их количество в 3-4 раза больше.

Вообще разновидностей лент очень много, попробую разделить их на группы;
1. Количество светодиодов на метр — 30 — 60 — 120 — 240
2. Напряжение питания — 5 — 12 — 24 — 220
3. Цвет — Красный — зеленый — синий — белый (теплый, холодный, нейтральный) — RGB — RGBWW.
4. Защита — обычная — герметичная (покрытая силиконом).
5. Исполнение — однорядная — двухрядная
6. Расположение светодиодов — фронтальная — торцевая.
7. Тип светодиодов — выводные — SMD
8. Корпус SMD светодиодов — 3014 — 3528 — 3825 — 5630 — 5730 — 5050.

Вернее это даже не разделение на типы, а вариации примененных компонентов и исполнения, обозреваемая лента выделена жирным шрифтом.

Кроме того сейчас существуют ленты с «умными» светодиодами, в ней можно управлять каждым светодиодом, но необходим соответствующий контроллер. Также применение таких лент ограничивает еще и низкое питание, потому ток потребления получается очень большой.

Белая лента часто используется для местного освещения. Кстати по поводу этого небольшой совет, если планируете делать подсветку, то выбирайте ленту с большой плотностью, например 120шт/м и используйте рассеиватель. Дело в том, что например на кухне популярны рейлинги, и если использовать ленту с малой плотностью и без рассеивателя, то вы будете видеть отражение светодиодов в виду ярких точек, что будет очень неприятно для глаз.
Например есть однорядные ленты с количеством светодиодов 240шт/метр.

Кроме того, использование лент покрытых силиконом также не всегда полезно, так как силикон имеет свойство темнеть со временем и его не очень удобно мыть.
Потому я бы советовал применять алюминиевые радиаторы с рассеивателем, получается дороже, но удобнее и красивее.

Лента представляет собой небольшие участки, на которых находится три светодиода и три резистора. Светодиоды одного цвета соединены последовательно и ток через них ограничивается при помощи резистора.
В данном случае это резистор 330 Ом и два по 150Ом. Различие в номиналах обусловлено тем, что на разных светодиодах разное падение напряжения.

Проверим сначала мощность, здесь я решил попутно показать, что светодиодные ленты имеют нелинейную характеристику потребляемого тока в зависимости от напряжения.
Например я как то встречал вопросы типа — а от 9 Вольт лента работать будет?
Будет, только мощность упадет очень сильно.

И так, тестируем ленту в двух режимах, при напряжении 12 и 10 Вольт и смотрим как меняется потребляемая мощность.
Причем можно заметить, что мощность меняется по разному для светодиодов разного цвета.
1. Зеленый, 13.8 и 6.75 Ватта, разница в 2 раза.
2. Красный, 15.3 и почти 9 Ватт, разница около 1.7 раза

1. Синий, 12.2 и 5 Ватт. Разница почти 2.5 раза.
2. Все три цвета вместе, 35.8 и 18.6 Ватта, разница около 2 раз.

Эксперимент показал, что синие светодиоды более чувствительны к падению напряжения, так как прямое напряжение на них самое больше, а на красных наоборот, и с ними разница меньше всего. В случае с красными светодиодами на токоограничивающем резисторе падает больше и имеется небольшой запас напряжения.

Чем чревато такое падение.
1. Если вы пытаетесь использовать такую ленту как источник белого света (что в корне неправильно), то к концу ленты спектр свечения изменится, так как напряжение там падает и красный будет светить сильнее, а синий слабее.
2. К концу ленты просто упадет общая яркость.

Первый пункт проверять не вижу смысла, а вот второй покажу. Вообще я это уже как то делал в своем обзоре, но там была обычная белая лента.
На фото не очень хорошо видно, но даже так заметно, что светодиоды внизу светят ярче, чем светодиоды вверху. Думаю нетрудно догадаться, что вверху светодиоды с конца ленты.

Второй вариант снимка. Лента светит очень ярко и мешает фотографировать.

Если хочется получить гарантированно равномерную яркость свечения ленты по всей ее длине, то решается это очень просто, лента подключается диагонально.
Общая яркость ленты в таком варианте подключения останется примерно неизменной, но неравномерности не будет.

Возможно кто то скажет, да сколько там падает то на ленте. А падает довольно много.
Я подал 12 Вольт на одну сторону ленты и измерил напряжение на втором конце.
1. Зеленый, падение 3.1 Вольта
2. Красный — 2.5 Вольта
3. Синий — 2.5 Вольта
4. Все четыре цвета соединенные параллельно на втором конце, лента в режиме белого света — 2.7 Вольта.
Как видим, даже мой эксперимент со снижением напряжения до 10 Вольт не отражает всю картину, там падение было примерно мощности 1.7-2.5 раза, здесь же напряжение еще ниже, потому можно ориентироваться на значение 2-3 раза.

На некоторых снимках можно заметить, что суммарная мощность потребления ленты иногда отличается, хотя напряжение блока питания стабилизировано. Это влияние прогрева светодиодов. Чем выше их температура, тем меньше падение напряжения на них и тем больше ток потребления ленты.
В процессе тестов я не включал ленту на долго, так как тестировал ее в катушке, а нагревается в таком режиме она очень заметно.
На термограмме виден рост температуры за одну минуту.

Кстати, часто в интернете пишут, что смотанный на катушке кабель греется из-за индуктивности. Ниже наглядный пример того, что нагрев происходит лишь потому, что большое количество выделяемой энергии размещено очень компактно. То же самое происходит и с электрическим кабелем в удлинителе если его не размотать при большой токе нагрузки.

Но на самом деле мощные ленты могут перегреваться даже в размотанном состоянии, потому для них применяют специальные радиаторы.
Кроме того такие радиаторы обычно могут комплектоваться светорассеивателями, крепежом, торцевыми заглушками. Потому если хотите чтобы лента служила долго, то купите к ней радиатор или по крайней мере клейте на металлическую поверхность. После приклеивания рекомендую прозвонить контакты ленты и радиатор на предмет отсутствие короткого замыкания.

Перейдем теперь к контроллерам. Как показала практика, даже среди четырех протестированных контроллеров одинаково работают лишь два, потому я и решил их немного протестировать.

Для начала самый простой контроллер.
Производитель декларирует питание 12-24 Вольта и ток 18 Ампер, но так как каналов 3, то получается по 6 Ампер на один канал.
В большинстве случаев этого тока более чем достаточно, так как даже при 12 Вольт питании это более 200 Ватт.

Контроллер трехканальный, упакован в аккуратную коробочку.

В комплект входит:
1. Контроллер
2. Пульт управления
3. Двухсторонний скотч
4. Инструкция.

Инструкция на английском, но по большому счет она особо и не нужна. Из нее следует, что контроллер имеет 20 режимов работы.

Эту страницу инструкции я показал только из-за схемы подключения.
Здесь все просто, четыре контакта ленты подключаются к четырем контактам контроллера.

Первое мнение когда увидел контроллер — да он игрушечный 🙂
На вид действительно очень маленький.

Я не привожу ссылки на показанные в обзоре контроллеры, так как ссылки где уже сгорели, а сами контроллеры думаю ничем не отличаются от других таких же.

Провода подключаются при помощи винтовых клеммников, причем питание можно подавать как через клеммник, так и используя блок питания со стандартным штеккером.
Правда меня терзают сильные сомнения, что используемый клеммник, не говоря о разъеме, выдержит 18 Ампер. Реально думаю что максимум 6-8 при использовании клеммника и 4-5 при использовании разъема.

Так как снаружи ничего интересного нет, то дальше я полез внутрь. Это первый контроллер светодиодной ленты, который попал ко мне в руки, раньше и не приходилось с ними сталкиваться, но все когда нибудь бывает в первый раз.

Печатная плата выглядит весьма аккуратно, клеммники довольно качественные, потому возможно и до 10 Ампер проблем не будет.
Правда электролитический конденсатор, установленный на плате, навевает грусть. Я даже вспомнил мой первый опыт с низковольтным ШИМ регуляторов мощности, где узнал что конденсаторы очень даже могут греться.

С обратной стороны платы видны залуженные участки дорожек для увеличения сечения.
Также видно много переходов между сторонами платы, правда толку от них немного, так как они отводят большей частью тепло не от корпуса транзистора, а от двух его выводов.

Силовая часть реализована при помощи трех полевых транзисторов NTD4963N.
Данные транзисторы имеют сопротивление открытого канала 9.6мОм. Что при токе 6 Ампер и почти статическом режиме работы будет примерно равняться примерно 0.35Ватта рассеиваемой мощности. Но дело в том, что я не проверил какое у них напряжение на затворе (а скорее всего оно 4.5-5 Вольт), потому посчитаю заодно для самого худшего режима, когда питание 5 Вольт. В данном варианте даташит говорит о сопротивлении в 16мОм или почти 0.6 Ватта при непрерывном токе в 6 Ампер.

Для такого корпуса и такой платы это с большим запасом, я думаю можно было ы спокойно ток поднять до 8 Ампер, правда это не имеет особого смысла, но запас у транзисторов есть.
В качестве драйвера применена микросхема CD4050BM, а справа внизу находится EEPROM 24C02.

Управляется же вся эта конструкция от микропроцессора со стертой маркировкой.
За дистанционное управление отвечает еще одна микросхема и опять со стертой маркировкой, хотя для меня вообще непонятен смысл такой «шифровки».

Пульт работает на частоте 2.4ГГц, питание от двух элементов АА. Внешне похож на кусочек мыла 🙂
Пульт полностью сенсорный, т.е. какие либо механические кнопки отсутствуют как класс, что на мой взгляд очень неудобно.
Дело в том, что как его ни держи, а все равно можно случайно зацепить другой сенсор и переключить какой нибудь режим. Возможно нужна практика, но мне не очень понравилось.
Сверху цветной круговой сенсор, водя по которому пальцем, можно относительно плавно менять свет свечения ленты.
Снизу шесть сенсоров управления — Яркость, скорость переключения, выбор эффекта.

Все контроллеры я проверил на предмет наличия пульсаций. Вернее даже не так. Пульсации есть у всех контроллеров, так как они используют ШИМ при регулировании, потому проверялись две вещи:
1. Частота работы и соответственно пульсаций.
2. Отсутствие пульсаций в режиме 100% яркости.

По первому пункту провал, частота работы ШИМ регулировки всего 125 Гц, это мало, очень мало. Почти на такой частоте мерцают люминесцентные лампы с электромагнитным балластом. Но у лам есть понятие — послесвечение люминофора, здесь же такого нет, потому я бы советовал такой контроллер только дли эпизодического использования.

Небольшое видео про этот контроллер. Если смотреть внимательно, то видно что регулировка переходов между цветами не очень плавная, т.е. вариантов смешивания цветов не так много.

Второй контроллер очень похож на первый. похожая коробочка, только в более ярком исполнении.
Но здесь заявлено наличие четырех каналов и суммарный ток в 24 Ампера.

Комплект точно такой же как и у предыдущего контроллера: Контроллер, пульт, инструкция и двухсторонний скотч.

Инструкция также почти идентична, но эффекты немного отличаются.

Да и само устройство почти один в один. Разница в наличии четвертого канала для управления лентой с отдельным каналом белого цвета и измененной программе.
Дело в том, что в первом случае при включении режиме — освещение (белый цвет) включаются все три канала, здесь же три канала цветов отключаются и включаются только белые светодиоды.

Подключение и конструкция идентична предыдущему контроллеру.

Хотя на плате изменения больше, чем просто один дополнительный транзистор.
Например входной конденсатор стоит уже с претензией на низкий импеданс.

Но дорожки снизу не усилены, хотя ток заявлен больше, чем у предыдущего варианта.

Вообще плата собрана довольно аккуратно.

Применены четыре транзистора 09N03, согласно найденному даташиту они имеют максимальное напряжение в 25 Вольт (потому я не рекомендую питать такой контроллер от 24 Вольт как заявлено), и сопротивление 9 или 12 мОм в зависимости от напряжения управления.
В плане тепловыделения картина примерно идентична предыдущему контроллеру, может чуть лучше, но несущественно. Потому 6 Ампер на каждый выход вполне реален.
В качестве «драйвера» применена та же микросхема.

Ну и как в прошлый раз, микроконтроллер со стертой маркировкой, чип EEPROM и микросхема радиоприемника.

Пульт идентичен почти на 100%, но пульты не взаимозаменяемы, так как предположительно имеют различную кодировку и друг другу не мешают.

На осциллограмме мы видим те же пульсации с частотой 125 Гц и то же отсутствие пульсаций в режиме 100% яркости. Что дает повод предположить идентичность контроллеров, конечно за исключением небольшого изменения программы для управления каналом белого света.

На этом видео можно заметить, что при переходе в режим освещения лента погасает, это нормально, так как лента RGB, а контроллер RGBW.

Этот контролер не попал на групповое фото, да и вообще я сначала даже как то забыл про него.
Он явно отличается от предыдущих вариантов, по крайней мере внешне.

Корпус металлический, заявленные характеристики такие же как у первого варианта, 18 Ампер общий ток или до 6 Ампер на канал, каналов три.

Данный вариант исполнения на мой взгляд немного лучше, корпус можно прикрутить к чему либо, да и применены более удобные и качественные клеммники, но при этом есть и обычный разъем питания.
/На клеммник выведены контакты подключения ленты и питания.

Как видно на фото, клеммник состоит из двух частей, к одной части подключаются провода, потом эта часть уже подключается к контроллеру, так удобнее подключать, особенно в узких нишах.
Если вы думаете что металлический корпус нужен для охлаждения, то расстрою, транзисторы не то что не имеют теплового контакта с ним, а и вообще находятся на другой стороне платы. Хотя судя по предыдущим вариантам охлаждение им и не нужно.

Плата аккуратная. Так как корпус металлический, а радиоволны через металл пролазить никак не хотят, то антенна размещена около разъема. Практика показала, что особо на дальности это не сказывается. Вернее сказывается, но дальность работы в домашних условиях достаточна и в таком исполнении.

Разъемы как всегда паяли уже после сборки самой платы, потому видны следы флюса, дорожки не усилены.

Ключевые транзисторы идентичны первому варианту контроллера. Также на плате виден неизвестный микроконтроллер, EEPROM и чип радиоприемной части, но на этот раз с маркировкой.
А вот чего здесь нет, так это «драйвера» для управления полевыми транзисторами, хотя на низких частотах работы это не имеет почти никакого значения.

А вот пульт отличается кардинально. Причем все фото с этим пультом мне пришлось перефотографировать, так как правильно он располагается кнопками вверх, заметил я это только когда понял, что яркость ленты регулируется наоборот 🙂
Здесь у производителя получилось сделать и плохо и хорошо одновременно.
1. Хорошо — кнопки не сенсорные, реально удобнее чем сенсоры, так как ощущаются тактильно ДО нажатия/прикосновения.
2. Плохо — кружок регулировки цвета распложен внизу и при нажатии на кнопки его легко можно зацепить рукой, при этом контроллер обычно отключает последний выбранный режим и переходит в режим регулировки цвета. Но срабатывает такой не всегда, видимо зависит от выбранного режима работы.

Питание пульта 3 батарейки ААА, возможно потому дальность получилась сопоставимой с контроллерами в пластмассовом корпусе. Частота работы неизвестна, судя по антенне предположу что не 2.4ГГц, как в предыдущих, а около 433.

В плане мерцания данный контроллер хуже всех, так как он имеет не только низкую частоту пульсаций, а и не умеет в режиме 100% яркости подавать питания непрерывно, потому на правой осциллограмме видны небольшие провалы (осциллограмма инвертирована).

Сравнительное фото пультов трех контроллеров.

Я не зря на предыдущем фото показал пульты, хотя в запасе остался еще один контроллер.
Дело в том, что следующий вариант пультом не комплектуется.

Вот с покупкой этого контроллера и возникла накладка. Товарищ глядя на частоту работы в 2.4ГГц и заявленное управление со смартфона решил, что здесь WiFi. По большому счет такая ошибка вполне возможна, правда я думаю, что если бы он поддерживал WiFi, то это было бы написано большими буквами на самом видном месте.
Зато в характеристиках указано наличие микрофона, программируемого включения и еще всякие полезности.

Комплект прост, сам контроллер и антенна, но размеры контроллера заметно больше, чем у предыдущих.

В процессе разбирательства было почти сразу понятно, что контроллер работает через Bluetooth, так как первое о чем спросило ПО — у вас выключен блютуз, надо бы включить 🙂
Дальность работы на удивление большая, по крайней мере в пределах мой квартиры все работало.

Подключение к ленте и питанию реализовано при помощи таких же разъемных клеммников, как и у предыдущего варианта.
С другой стороны находится разъем подключения питания и антенны, а также светодиод (моргает когда нет связи и светит непрерывно когда связь установлена).

В собранном виде.

Но мне больше интересно, что у него внутри, собственно по этому я и решил написать обзор.
Плата стоит в корпусе так, что вынуть ее можно только в одну сторону.

Как видно, плата односторонняя, сверху микрофон и несколько конденсаторов. Входной конденсатор даже меньше, чем у первого варианта контроллера. Материал платы — гетинакс.

Силовые дорожки довольно обильно покрыты припоем, для увеличения сечения.
Общее качество изготовления на троечку.

Рассмотрим внутренности внимательнее.
1. Транзисторы, если я правильно понял, то это ISL9N306AD3ST, которые имеют следующие параметры — 30V, 50A, 6mOhm. Весьма неплохо, если бы оно но. Сверху на корпусе указано ток — 30А*3, т.е. формально получается что три канала по 30 Ампер. Понятно что это полный бред и должно быть написано 30А/3, т.е. три канала по 10 Ампер. Но даже суммарный ток в 30 Ампер просто не выдержат установленные клеммники, не говоря о разъеме питания.
Сами транзисторы ток в 10 Ампер выдержат без проблем без дополнительного охлаждения, рассеиваться при этом на них будет до 0.6 Ватта.
Качество сборки и пайки грустное, транзисторы припаяны абы как, да и все остальное как то не очень красиво выглядит.

2. «Рулит» транзисторами микросхема ULN2003, но для такого применения эта микросхема слабо подходит, она обеспечивает полное напряжение на затворе, но медленное открывание.

3. Микрофонный усилитель. Проверял, работает, но чувствительность не очень высокая, хотя если контроллер будет недалеко от источника звука, то будет работать. Из звукового сигнала выделяются низкие частоты и получается, что переключение светодиодов происходит в такт с музыкой. В общем на мой взгляд, так себе.

4. Bluetooth модуль. Сначала я даже не заметил, что в этом контроллере нет собственно микроконтроллера, управляющего режимами работы. Уже когда готовил обзор, то понял, со смартфона производится не только собственно управление, а и вообще вся работа. По сути взяли Bluetooth чип, прицепили к свободным портам ввода/вывода три канала светодиодов и сигнал с микрофона, дальше все делает программа. Не совсем удобно.

Попутно заметил, что на выходе устройства довольно большие резонансные помехи от переключения транзисторов, это отчасти обусловлено тем, что на выходе нет диодов, которые гасят эти выбросы, опять экономия.
При всех своих минусах есть и плюсы:
1. Частота пульсаций здесь в 1000 раз выше, около 125кГц.
2. В режиме полной яркости пульсации отсутствуют.
3. Можно выставить очень маленькую яркость, другие контроллеры так не умеют.

Высокая частота одновременно является и минусом, гораздо сложнее переключать транзисторы на такой частоте, растут динамические потери и возрастает уровень помех. Более оптимальна была бы частота 1-10кГц.

ПО очень простое, сначала я пробовал скачать с маркета, но оно даже не устанавливалось. В итоге зашел на сайт производителя и скачал ПО там, после этого все без проблем заработало.
Главное меню позволяет зайти в меню настроек освещения, выбора музыки (просто включить музыку на смартфоне, на контроллер ничего не передается), настроек таймера и меню подключения.

При включенном контроллере будет доступно подключение к нему.
Таймер я вообще мало понял, при необходимости держать для этого постоянно подключенным смартфон идея выглядит весьма криво.

Меню управления светом дает возможность включить белый цвет (все три канала включены), а также также эмулирует цветовой диск обычных контроллеров.
Также имеется регулировка яркости и частоты переключения светодиодов в режиме эффектов.
Режимы эффектов не очень эффектны, если так можно выразиться, формально их всего четыре, некоторые зависят от звука, но мне не понравились.

А вот с настройкой Lighting я не совсем разобрался, при регулировке до половины она меняет яркость ленты от 0 до 100%, дальше приглушает свет.

Что можно сказать обо всех этих контроллерах.
Лично мне не очень понравилась грубая регулировка цветовых переходов, да это и на видео заметно.
Простые контроллеры имеют низкую частоту работы, но они полностью автономны, в отличии от версии с Bluetooth, где для работы необходим смартфон.
Все четыре контроллера выдерживают заявленный ток, но есть большие сомнения, что такой ток вытянут разъемы питания.

Вообще, лично на мой взгляд, такие вещи скорее подходят для декоративной подсветки в магазинах, вывесках, и т.п. Хотя мои соседи сделали дома такую подсветку, смысл данного действия от меня несколько ускользает. Как вариант, праздничный вариант подсветки для дома, дешево и красиво.

Для освещения обозреваемая лента не подходит абсолютно, так как белый цвет формируется по сути тремя одноцветными светодиодами, ну а в купе с низкой частотой пульсаций и их 100% коэффициентом (в режиме менее 100% яркости), то вообще швах.

Небольшие советы:
1. Если планируете не только украшать помещение, а и освещать, то выбирайте ленту RGBWW.
2. Для местной подсветки выбирайте ленту с большой плотностью.
3. Если лента имеет большую мощность (примерно более 8-9Вт/м), то используйте радиатор, тем более что сейчас радиаторы есть очень разных форм…
4. С рассеивателем свет получается ровнее и меньше заметны отдельные светодиоды.
5. Для равномерной яркости можно использовать диагональное подключение.
6. Не все контроллеры полезны, лучше выбирать такие, которые имеют большую частоту работы ШИМа. Самый простой способ проверки — «карандашный тест», зажмите карандаш между двух пальцев и быстро подвигайте им, если видите четкие контуры карандаша, то плохо.
7. Как показала практика, у всех проверенных мною контроллеров выходная мощность ограничена входным разъемом, а не транзисторами или их нагревом. Мощность можно легко поднять если припаять провода от блока питания прямо к плате.
8. При большой длине лент лучше искать ленты на 24 Вольта, меньше придется бороться с падением напряжения.
9. Не всегда надпись 2.4ГГц означает WiFi или Bluetooth, иногда этот просто частота работы радиоканала, будьте внимательны.

У меня на этом все.

Поздравляю всех с Новым Годом.
Желаю чтобы у всех в этом году было как можно больше хороших и полезных покупок, а обращений за помощью или возвратами как можно меньше. Также желаю чтобы слово «таможня» вы знали только из фильма «Белое солнце пустыни» и никогда с ней не общались.
Ну и конечно же авторам побольше читателей, читателям побольше авторов, а администрации больше тех и других 🙂

RGB-светодиоды: адресуемая светодиодная лента

В данной статье мы расскажем о цветных светодиодах, отличии простого RGB-светодиода от адресуемого.

Также мы дополним материал информацией о сферах применения, о том, как они работают, каким образом осуществляется управление со схематическими картинками подключения светодиодов.

1. Вводная информация о светодиодах

Светодиоды – электронный компонент, способный излучать свет. Сегодня они массово применяются в различной электронной технике: в фонариках, компьютерах, бытовой технике, машинах, телефонах и т.д. Многие проекты с микроконтроллерами так или иначе используют светодиоды.

Основных назначений у них два:

  • демонстрация работы оборудования или оповещение о каком-либо событии;
  • применение в декоративных целях (подсветка и визуализация).

Внутри светодиод состоит из красного (red), зеленого (green) и синего (blue) кристаллов, собранных в одном корпусе. Отсюда такое название – RGB.

2. С помощью микроконтроллеров

С помощью него можно получить множество различных оттенков света. Управление RGB-светодиодом осуществляется с помощью микроконтроллера (MK), например, Arduino.

Конечно, можно обойтись простым блоком питания на 5 вольт, резисторами в 100-200 Ом для ограничения тока и тремя переключателями, но тогда управлять свечением и цветом придется вручную. В таком случае добиться желаемого оттенка света не получится.

Скетч Arduino для управления трехцветным светодиодом написать несложно, можно найти множество примеров в интернете с полным описанием подключения. Мы уже делали такую программу для Wemos — посмотрите здесь, и для Arduino — здесь.

Проблема появляется тогда, когда нужно подсоединить к микроконтроллеру сотню цветных светодиодов. Количество выводов у контроллера ограничено, а каждому светодиоду нужно питание по четырем выводам, три из которых отвечают за цветность, а четвертый контакт является общим: в зависимости от типа светодиода он может быть анодом или катодом.

3. Контроллер для управление RGB

Для разгрузки выводов МК применяются специальные контроллеры WS2801 (5 вольт) или WS2812B (12 вольт).

С применением отдельного контроллера нет необходимости занимать несколько выходов MK, можно ограничиться лишь одним сигнальным выводом. МК подает сигнал на вход «Data» управляющего контроллера светодиода WS2801.

В таком сигнале содержится 24-битная информация о яркости цвета (3 канала по 8 бит на каждый цвет), а также информация для внутреннего сдвигового регистра. Именно сдвиговый регистр позволяет определять, к какому светодиоду информация адресовывается. Таким образом можно соединять несколько светодиодов последовательно, при этом использовать все так же один вывод микроконтроллера.

4. Адресуемый светодиод

Это RGB-светодиод, только с интегрированным контроллером WS2801 непосредственно на кристалле. Корпус светодиода выполнен в виде SMD компонента для поверхностного монтажа. Такой подход позволяет расположить светодиоды максимально близко друг другу, делая свечение более детализированным.

В интернет-магазинах можно встретить адресные светодиодные ленты, когда в одном метре умещается до 144 штук.

Стоит учесть, что один светодиод потребляет при полной яркости всего 60-70 мА, при подключении ленты, например, на 90 светодиодов, потребуется мощный блок питания с током не менее 5 ампер. Ни в коем случае не питайте светодиодную ленту через контроллер, иначе он перегреется и сгорит от нагрузки. Используйте внешние источники питания.

5. Недостаток адресуемых светодиодов

Адресуемая светодиодная лента не может работать при слишком низких температурах: при -15 контроллер начинает подглючивать, на более сильном морозе велик риск его выхода из строя.

Второй недостаток в том, что если выйдет из строя один светодиод, следом по цепочке откажутся работать и все остальные: внутренний сдвиговый регистр не сможет передать информацию дальше.

6. Применение адресуемых светодиодных лент

Адресуемые светодиодные ленты можно применять для декоративной подсветки машины, аквариума, фоторамок и картин, в дизайне помещений, в качестве новогодних украшений и т.д.

Получается интересное решение, если светодиодную ленту использовать в качестве фоновой подсветки Ambilight для монитора компьютера.

Если вы будете использовать микроконтроллеры на базе Arduino, вам понадобится библиотека FastLed для упрощения работы со светодиодной лентой (скачать здесь).

Светодиодная RGB лента с контроллером и пультом – схема подключения и монтаж

В настоящее время широкое применение получили источники света на основе светодиодов. По-другому их называют LED-лампы. Их лампочки имеют маленькие размеры, потребляют мало энергии, зато светоотдача у них высока. Чтобы подсветить городские объекты, часто используют светодиодную RGB-ленту. По сути это лента с нанесенными на нее светодиодами, которые могут менять свой цвет и яркость свечения.

В некоторых моделях этого устройства в один светодиод встроены сразу три кристалла, поэтому светодиодная лента может подсветить помещение самыми разными цветами. Чем дороже и многофункциональнее управляющий контроллер, тем красивее будет подсветка, которая может быть любого оттенка.

Комплект устройств для создания многоцветной подсветкиКомплект устройств для создания многоцветной подсветки

Режим светодиоду задает ПУ, нажатием на кнопку можно менять не только оттенки ленты, но и скорость смены цветов, яркость подсветки.

Самые популярные светодиодные RGB-ленты

Ниже рассмотрим ленты со светодиодами SMD 3528 и SMD 5050, их особенности и отличия, ведь они используются чаще всего.

Все еще широко используются светодиоды типа SMD 3528. Несмотря на существование более современных кристаллов, эти лампочки стоят недорого и имеют неплохие характеристики, поэтому часто применяются для освещения помещений и поверхностей. Светодиоды ленты этого типа прямоугольные, размеры – три с половиной миллиметра на двадцать восемь миллиметров. Это легко запомнить, ведь модель светодиода назвали, исходя из его размера.

Светодиодная матрица SMD 3528Светодиодная матрица SMD 3528

Кристаллы такого размера создают свет только одного цвета, они могут светиться либо холодным белым, либо теплым белым, синим, красным, зеленым или же желтым цветом. Цветной лента SMD 3528 называется, если ее светодиод состоит из трех кристаллов. Но из-за того, что количество кристаллов становится больше, их размеры уменьшаются, в результате чего один кристалл дает меньше света.

Несмотря на то, что в продаже имеются более развитые модели, лента SMD 3528 имеет свои преимущества:

  • доступность;
  • потребляет очень мало электроэнергии;
  • функциональность и простота установки;
  • для работы не требуется дополнительных устройств;
  • пользоваться и управлять ей очень просто.

К недостаткам этой ленты относится то, что кристалл не может менять цвета, и маленький размер светодиодов.

Эта разновидность ленты RGB может использоваться для подсветки и акцентирования внимания на определенных предметах в комнате, например стены, рисунков, телевизора.

SMD 5630SMD 5630

Размер светодиода ленты SMD 5050 равен 5,0 х 5,0 мм, то есть цифры в названии указывают на размер светодиодного чипа в миллиметрах. Такая конструкция делает ее очень гибкой, поэтому лента этого вида часто применяется для подсветки фасадов зданий, реклам, фонтанов, автомобилей. В этой модели диод состоит из трех кристаллов, которые могут быть одного цвета, а могут быть и разноцветными – красные, зеленые или синие.

Безопасность ленты SMD 5050 доказана, поэтому вашему здоровью ничего не грозит. При этом она может работать более 2 000 суток, что не может не радовать.

SMD 5050SMD 5050

Изучив и выбрав нужную модель, нужно определить, лента какой длины вам нужна для подсветки помещения. В метре ленты может быть минимум тридцать кристаллов и максимум сто двадцать штук в один ряд. Соответственно, если они располагаются в два метра, их количество умножается на два.

Для удобства расчета требуемой интенсивности освещения можно воспользоваться таблицей.

Технические параметры устройств разных видов Технические параметры устройств разных видов

Схема и подключение RGB-светодиодных лент

Для того чтобы самостоятельно установить RGB-светодиодную ленту с контроллером и пультом, необходим паяльник – остальные инструменты должны прилагаться.

Итак, для установки устройства необходимы:

  1. Контроллер и пульт управления. Это устройство, управляющее режимами, яркостью свечения и цветом подсветки.
  2. Блок питания, который может иметь напряжение двенадцать или двадцать четыре вольта. Обратите внимание на мощность этого устройства. Для того чтобы ее вычислить, значение мощности одного метра ленты умножается на длину используемого осветительного прибора и коэффициент запаса.
  3. Коннекторы. Их можно использовать в том случае, если нет паяльника. После разрезания ленты коннектор поможет соединить части воедино.
Схема монтажа GRB светодиодной лентыСхема монтажа RGB-светодиодной ленты

Для того чтобы выполнить подключение, нужно выполнить следующие действия:

  1. Подготовьте поверхность. Для этого в том месте, где будет находиться источник света, поверхность необходимо выровнять и воспользоваться растворителем для того, чтобы избавиться от возможного жира. Если поверхность металлическая, проложите электроизоляционный материал между поверхностью и светодиодной лентой.
  2. Крепление устройства. Все ленты имеют клейкую поверхность. С нее нужно снять защитное покрытие и прикрепить в нужное место, при этом радиус изгиба не должен быть больше двух сантиметров, иначе это может вызвать повреждение конструкции. Если ленту приходится разрезать, делать это нужно по специальным меткам, для соединения же используют паяльник или коннектор.
  3. Собирание цепи. Прежде всего с блоком питания соединяются провода светодиодной ленты. При этом при подключении нужно учитывать полярность, иначе составные части конструкции выйдут из строя. Если лента цветная, подключаем ее также к трехканальному контроллеру. Лента крепится красным проводом в разъем «R», зеленым к «G», синим к «B», а четвертый провод подключается к клемме.

Если вы присоединили провода неправильно или перепутали полярность, светодиодная лента либо совсем не будет освещать поверхность, либо при нажатии на пульте определенного цвета она будет светиться по-другому.

RGB-лента с контроллером и пультом имеет свои неоспоримые преимущества:

  • простой монтаж;
  • экономия электричества, а значит и финансов;
  • можно установить ленту той длины, которая вам необходима, благодаря возможности разрезать изделие;
  • высокий КПД;
  • не выделяет ультрафиолета;
  • устойчива к перепадам напряжения;
  • безопасна для здоровья;
  • прослужит очень долго.

Недостатком таких устройств является разве что их стоимость. Поэтому их редко используют в качестве основного источника света. Чаще все же при помощи многоцветных лент создают декоративную подсветку предметов, ведь довольно дорого будет создать равномерное и достаточное освещение помещения.

Применение светодиодной ленты расширяет дизайнерские возможности и позволяет достаточно просто осуществить изысканную подсветку, которая повысит интерьерную эстетику и обеспечит существенное энергосбережение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *