Состав арболита: Страница не найдена — Строительные материалы от А до Я

Содержание

состав, пропорции по ГОСТ, изготовление своими руками

Арболитовые блоки все чаще стали использовать при возведении одноэтажных домов, внутренних перегородок в них, гаражей, хозяйственных построек. Впервые о них как о строительном материале для изготовления временного и постоянного жилья заговорили в середине 20 века.

Оглавление:

  1. Состав арболита
  2. Пропорции
  3. Как сделать своими руками?

Несмотря на то, что основным компонентом является дерево, по многим характеристикам арболит не уступает традиционным материалам, он сохраняет тепло и комфортабельную обстановку в построенных из него помещениях.

Из чего состоят блоки?

Компонентный состав арболита рассчитан так, что он способствует сохранению его прочности, огнестойкости и долговечности. В него входят: вода, наполнители, цемент, химические добавки.

1. Наполнители. Применяются отходы переработки сельскохозяйственных культур (чаще костры льна) и деревообработки (щепа).

  • Древесная щепа – самый распространенный компонент. При производстве блоков из арболита берется щепа длиной до 15 см и шириной не более 2 см, без присутствия листьев и примесей. Вместе со щепой можно добавить опилки или стружку в соотношении 1:1. Используются в основном хвойные породы древесины, намного реже – лиственные.
  • Костры льна. Являются полноценным материалом для арболита. Используются в том виде, в каком они были на предприятии: их не надо дополнительно измельчать. При длине частиц льна 15-20 см и ширине до 5 см качество получаемых блоков высокое.

2. Все наполнители содержат в составе сахара и смоляные кислоты, препятствующие адгезии цемента с их частичками. Для уменьшения их количества и минерализации щепы (костр льна) применяются: сернистый глинозем, хлорид кальция, жидкое стекло, известь. Эти компоненты повышают биологическую устойчивость, снижают водопроницаемость, увеличивают срок эксплуатации блоков. Их можно использовать как самостоятельно, так и сочетать между собой: хлорид кальция и сернокислый глинозем (1:1), жидкое стекло и гашеную известь (1:1). Каждую добавку перед применением необходимо растворить в воде.

3. Вода – берется обычная техническая.

4. Цемент – используется с маркой 400 или 500 (можно выше).

 Пропорции компонентов

При изготовлении арболита следует строго соблюдать соотношение всех ингредиентов между собой. Расход материалов в процентном содержании:

  • соотношение наполнителей составляет 80-90%;
  • примерный объем цемента в общей массе – 10-15%;
  • объем воды – 60-70%;
  • химические добавки – 2-4%.

Для производства 1 м3 материала берутся следующие пропорции компонентов в арболитовых блоках: по 300 кг наполнителя и цемента, 400 л воды.

При обработке наполнителей используется чаще всего известковый раствор. Он готовится в пропорции: 2,5 кг извести, 150-200 л воды на 1 м3 древесной щепы (костр льна). Чтобы ускорить затвердевание и улучшить свойства материала, добавляются хлористый алюминий, жидкое стекло, хлористый кальций в соотношении: на 1 м3 арболита – до 10 кг. Такой состав смеси является классическим, а изменение пропорции компонентов может негативно сказаться на качестве.

Изготовление арболита

Сделать блоки из арболита можно самому, а не приобретать готовые. При этом нет необходимости вкладывать большие финансовые средства на покупку дорогого спецоборудования и сырья.

Перед тем как сделать арболитовые блоки своими руками необходимо приготовить:

  • лоток для замешивания смеси или бетономешалку;
  • разъемные формы;
  • лопату;
  • крупное сито;
  • поддон металлический.

Предварительно следует позаботиться о формах для выработки блоков из арболита. Их можно приобрести или сделать своими руками. Для изготовления используются доски до 2 см толщиной, скрепленные по требуемым размерам. С внешней стороны их отделывают пленкой (фанерой).

Перед тем как делать блоки из арболита, наполнитель выдерживается около 40 дней на улице. Это очищает его состав от сахаров и смоляных кислот. В течении всего времени его следует переворачивать и «тормошить» до 4 раз в день, чтобы дать возможность воздуху свободно проникать в нижний слой. Для достижения максимального эффекта и ускорения процесса распада сахаров и кислот наполнители рекомендуется поливать 15% раствором извести. Она же является прекрасным антисептиком. Затем отлежавшийся состав просеивается ситом с крупными ячейками, что избавляет его от остатков земли и постороннего органического мусора.

Вся работа выполняется в такой последовательности:

1. Очищенный наполнитель замачивается в воде. В этот состав добавляется жидкое стекло и перемешивается бетономешалкой или вручную (при небольшом объеме).

Смесь для изготовления арболитовых блоков готовится в пропорции: 6:2:1, это означает, что на 6 мешков наполнителя потребуется 2 просеянного песка и 1 цемента. При замешивании не надо все компоненты сразу загружать в бетономешалку. Их лучше закладывать порциями, не выключая агрегат. Частями заливается и вода. Такой способ даст возможность избежать образования комков и повысит конечное качество материала.

2. Подготовить формы для заливки. Для этого их внутренняя сторона обмазывается известковым молочком. Чтобы не было прилипания массы к стенкам, их можно обшить линолеумом.

3. Арболитовая смесь заливается в формы. Чтобы не допустить образования завоздушленных участков, после заполнения вся масса взбалтывается, стенки простукиваются.

4. Смесь уплотняется электрической (пневматической) трамбовкой, можно использовать вибропресс. Выдерживается около суток.

Формы ставятся в затененное место, укрываются пленкой и выдерживаются около трех недель на воздухе при температуре не меньше 15 С. Изготавливая блоки своими руками, специалисты советуют первую партию сделать небольшой, чтобы проверить качество и правильность взятых пропорций всех компонентов.

Блоки из арболита готовы к возведению строения после того, когда достаточно хорошо схватятся. Главное условие – это обязательная внешняя отделка.

состав и пропорции на 1м3, видео технологии изготовления

В 30-е годы прошлого столетия голландские строители попробовали смешать цемент со старыми опилками. Свойства деревобетона оказались вполне приличными, но технология не выстраивалась. Блоки не хотели застывать, их поверхность шелушилась, а спустя пару лет, особенно на улице, они начинали потихоньку разрушаться. Однако энтузиасты не оставляли попыток и придумали новые схемы.

Оглавление:

  1. Технические параметры
  2. Нюансы изготовления и добавки
  3. Инструменты и приспособления
  4. Ингредиенты и пропорции

Дерево и камень

Арболитовые блоки сочетают простоту обработки дерева с прочностью каменных изделий. Основной состав смеси – опилки и цемент? yо кроме «классики» его готовят и на основе других древесных материалов, порой самых неожиданных: песок, древесные стружки (ЦСП), резаная солома, шкурки семечек подсолнуха, шелуха риса и даже высушенные водоросли.

Диапазон прочности – М5-М50, варианты от М5 до М15 относят к утеплителям, с маркой от 15 кг/см2 и выше называют конструкционными. Применяют в виде готовой продукции (блоки, плиты, перемычки, подоконные доски), а также в монолитном варианте. Практически полное отсутствие подвижности и малый объемный вес не позволяет выполнять полноценную заливку. Рыхлый и рассыпчатый раствор уплотняют трамбовкой либо укатывают.

Характеристики арболита

Готовые, даже высокомарочные конструкции легко обрабатываются. Их можно резать даже обычной ножовкой, строгать рубанком. Материал отлично держит шурупы, в него хорошо вбиваются гвозди. Еще одно полезное свойство: в отличие от обычного бетона сопротивляется растяжению немногим хуже, чем сжатию, что позволяет порой обходиться без армирования.

ГОСТ 19222-84 регламентирует технологию изготовления, расписывает соотношения ингредиентов.

 Согласно этому документу наружные стены требуется укрывать от влаги оштукатуриванием, либо облицовкой (плитка, сайдинг). Стальные изделия и арматуру необходимо защитить от коррозии. Неплохой эффект дает применение стеклопластика, но их свойства на достаточно долгий временной промежуток толком не изучены, а регламенты носят поверхностный характер.

Еще одно важное требование технологии: работа в отличие от обычного бетона разрешена при температуре не ниже +15°С.

Изнанка процесса

Изготовить арболит своими руками несложно. Просто насыпав в ведро цемент, воду и опилки, мы его не получим. Он не будет торопиться затвердеть, а если все же схватится, вскоре начнет разрушаться. Причина – наличие в древесине особых веществ, которые химики относят к классу сахаров. Они негативно влияют на цемент, сильно замедляют, а иногда даже совсем останавливают процесс твердения.

Чтобы этого не происходило, поступают одним из двух способов:

1. Дают опилкам «вылежаться» под открытым небом, периодически перемешивая. Процесс небыстрый, занимает полтора-два года. За это время все ненужные вещества вымываются либо переходят в нерастворимое состояние.

2. В рецептуру арболитовой смеси вводят специальные нейтрализующие сахара составы: гашеную известь с жидким стеклом (силикат натрия) или хлористый кальций плюс сульфат алюминия (сернистый глинозем). Есть и другие варианты, но эти две пары наиболее популярны.

Добавки и их подборка

Вариант хлорида кальция с глиноземом имеет приятный бонус в виде ускорения схватывания, что немаловажно при производстве своими силами. Что касается сочетания извести с жидким стеклом, оно заметно дешевле, но главное менее чувствительно к качеству исходного сырья. То, что щепа и опилки имеют разброс по влажности – еще полбеды. Содержание пресловутых сахаров сильно зависит от породы дерева, его возраста, времени и даже места где оно было срублено.

Чтобы выдержать технологию и пропорции для смешивания смеси, приходится уточнять ее подбором при каждой перемене заполнителя. Поэтому если вы самостоятельно решили заняться изготовлением, сырье желательно завозить по принципу «больше — лучше», чтобы не делать замеры и не пересчитывать соотношения каждый раз при завозе очередной партии. Тем более, что уходит на это как минимум неделя.

Готовим оснастку

Привлекает арболит еще тем, что открыть производство можно самостоятельно буквально «на коленке». Для небольшого цеха, рассчитанного на изготовление до полутысячи стандартных (19х19х40 см) блоков за смену понадобится:

  • Гравитационная или лопастная мешалка с рабочим объемом 140-180 литров.
  • Пластиковые емкости, ведра для обработки, переноски и дозирования сырья.
  • Весы, рассчитанные не менее чем на 10 кг.
  • Лопаты.
  • Формы. Их можно изготовить из тонкой листовой стали или сколотив из гладких досок. Чтобы раствор не лип к опалубке, ее смазывают эмульсией из воды, мыла и машинного масла.

Состав и пропорции компонентов

Для варианта хлорид кальция + сульфат алюминия на м3 готовой смеси: 500 кг цемента М400, столько же по весу или чуть больше опилок, по 6,5 кг каждого вида химиката, около 300 литров воды.  Если вы планируете использовать известь с силикатом натрия, соотношение соответственно будет 9 + 2,5 кг при прочих равных.

Для удобства пересчитаем на 1 м3 эти пропорции для замеса в ведрах по 10 л: цемент – 80; опилки – 160; добавки – хлор и кальций чуть больше половины ведра, глинозем – треть. Перемешав все это, получим чуть больше кубометра мокрых опилок, а после того как уплотним их в опалубке и дадим схватиться — куб арболита марки 25.

Технология производства организована по схеме:

  • Разводим реактивы в приблизительно третьей части (0,1 м3) всего количества воды.
  • Перемешиваем с опилками, даем вылежаться пару дней, укрыв пленкой.
  • Начинаем перемешивать, постепенно добавляя цемент.
  • Вымешиваем как минимум 5-7 минут. Вываливаем, раскладываем по формам, хорошо уплотняем.

На следующий день опалубку аккуратно снимаем. Через неделю блоки уже можно использовать для кладки. При тех пропорциях, что мы привели выше, их марочная прочность составит порядка 25-28 кг/см2. Изделиям дают полностью схватиться и высохнуть в течение трех-четырех недель.


 

Изготовление арболита своими руками: технология производства и самостоятельные работы

Поэтапная технология изготовления арболита предвидит подготовку основания, определения компонентов и состава блочного материала. В данной статье рассмотрим особенности производства своими руками с применением необходимого оборудования, расчета массы и заливки.   

Оглавление:

  1. Преимущества и недостатки арболита
  2. Технология производства арболита
  3. Подготовка основания для работы
  4. Компоненты и состав арболита
  5. Процесс и принципы изготовления
  6. Оборудование: применение на практике
  7. Блочные формы для арболита
  8. Процесс производства своими руками
  9. Советы экспертов при изготовлении блоков своими руками

Преимущества и недостатки арболита

Для многих строителей арболитные блоки являются ценным и качественным материалом для возведения домов. Главная особенность теплоизоляционных свойств позволяет из раствора производить напольные листы. Технология изготовления и принципы выдержки и сушки блоков предоставляют арболиту некоторые преимущества:

1. Прочность материала составляет 600-650 кг/м3, что по компонентной структуре не уступает иному строительному материалу. Главной особенностью является пластичность, что формируется в результате использования древесины, которая качественно армирует блоки. Таким образом, арболит не трескается под тяжестью иных материалов, а может только слегка деформироваться сохраняя общую систему конструкции.

2. Стойкость к низким температурам, что очень важно в процессе возведения дома и его эксплуатации. Дело в том, что если здание нагреется и замерзнет несколько раз, то это не повлияет на качество материала. Фактически дом из арболита может простоять минимум 50 лет в любые погодные условия. Конструкции из пеноблоков не имеют подобных свойств, ведь при постоянном замораживании они быстро потеряют свою функциональность.

3. Арболит не поддается воздействию углекислого газа, так что не стоит беспокоиться о карбонизации блоков, ведь их структура не позволит превратиться материалу в мел.

4. Теплопроводность блоков свидетельствует о популярности материала. Сравнивая показатели, стоит отметить, что стена из арболита в 30 см равняется 1 метру толщины кирпичной кладке. Структура материала позволяет сохранять тепло внутри помещения даже в самые холодные зимы, что весьма экономично при строительстве.

5. Звукоизоляционные свойства свидетельствуют о высоком коэффициенте поглощения арболита, который составляет от 0,7 до 0,6. Для сравнения древесина имеет показатели 0,06 -0,1, а кирпич немного больше около 0,04-0,06.

6. Легкость материала, что позволяет сэкономить средства на заливку фундамента.

7. Арболит является экологически чистым и долговечным строительным материалом, что определяет компонентный состав блоков. После возведения дома он не образует плесень и грибок на стенах.

8. Материал является безопасным, так он не воспламенятся.

9. Арболитные блоки легко применять в строительных работах, поскольку без труда в  них можно забить гвозди, просверлить отверстие, использовать шурупы и так далее. Внешняя структура материала позволяет покрывать его штукатуркой без использования специальных сеток и дополнительных утеплителей.

Мы рассмотрели преимущества арболитных блоков, но для полного воссоздания картины о данном строительном материале приведем некоторые недостатки:  

1. Стеновая панель может не выделяться точными геометрическими параметрами, от чего для восстановления ровности стены используют вагонку, сайдинг или гипсокартон, а сверху все отделяют штукатуркой.

2. Блоки не являются дешевым строительным материалом, ведь изготовление щепы для арболита требует некоторых затрат. Делая расчеты по сравнению из газобетоном, данный строительный материал обойдется только на 10-15 процентов дороже, что не формирует полное преимущество.  

Технология производства арболита

Изготовление арболита требует следованию технологиям производства с расчетом состава и объема для одного блока. Арболитные блоки представляют собой строительный материал простой по компонентному составу, в который входят древесина, вода, опилки, цемент и другие предметы.

Главной основой для производства считается древесная щепа. Составная часть арболитового блока определяет его прочность и устойчивость к повреждениям, что высчитывается высшим уровнем, чем у пено- или газоблоков. Производство в домашних условиях осуществить не сложно, однако необходимо придерживаться распределения массы предмета и следовать инструкции.

Подготовка основания для работы

Основной составляющей для изготовления щепы для арболита является соотношение пропорций стружки и опилок – 1:2 или 1:1. Все предметы хорошо высушивают, для чего их помещают на 3 – 4 месяца на свежий воздух, время от времени обрабатывая известью и переворачивая.

Примерно на 1 кубический метр средства потребуется около 200 литров извести 15-ти процентной. В них помещают все щепы на четыре дня и перемешивают их от 2 до 4 раз на день. Все работы проводятся с целью убрать сахар с древесины, который может спровоцировать гниение блоков. Щепу приобретают в готовом виде, однако, с помощью щепорезов можно сделать самостоятельно.

Компоненты и состав арболита

Компонентный состав арболита является самым важным этапом технологии производства и требует внимательного соотношения всех материалов. При изготовлении блоков важно следить за качеством и разновидностью приобретаемых материалов, которые определяют готовый строительный материал. После процесса изготовления в щепу добавляют следующие материалы, такие как:

  • известь гашеную;
  • жидкое стекло растворимое;
  • портландцемент;
  • хлористый калий;
  • алюминий и сернокислый кальций.

Производство арболита в пропорциях представлено в таблице 1. Стоит учесть, что для всех компонентов масса рассчитана на четыре процента доли цемента. Данная компоновка помогает сохранить огнеупорность предмета и придает пластичности.

Таблица 1. Состав арболита по объему

Марка арболита Цемент (М400) Кол-во извести Кол-во песка Кол-во опилок Получаемая плотность (кг/м3)
5 1 1,5 15 300-400
10 1 1 1,5 12 600-700
15 1 0,5 2,5 9 900-1000
25 1 3 6 1200-1300

Процесс и принципы изготовления

Оптимальные параметры блоков для технологии производства арболита составляют 25х25х50 сантиметров. Установленные размеры удобны при кладке стен домов, а также в процессе промышленности. Заливка блока состоит из трех рядов смеси и арболита, после каждого этапа необходимо уплотнять раствор молотком, отделанным жестью.

Излишняя масса свертывается при содействии шпателя. Выдерживается блок при температуре 18 градусов тепла на раскрытом воздухе. По истечении суток арболит выстукивается из формы на ровную поверхность, где он скрепляется на протяжении 10 дней.

Оборудование: применение на практике

Для производства необходимо разное снабжение, например, станки для изготовления арболита, которые выбираются в соответствии с объемом продукции и количества сырья. Технология промышленного процесса должна отвечать требованиям и критериям СН 549-82 и ГОСТу 19222-84. В качестве основного материала для выработки выступают хвойные  деревья. Раздробление древесины происходит с помощью рубильных машин, таких как РРМ-5, ДУ-2, а более скрупулезное дробление осуществляется на оборудовании ДМ-1.

Арболитовую смесь подготавливают со смесителями и растворителями различного цикличного воздействия на материал. Подвозят большие объемы обработанной смеси к формам с помощью приспособления в качестве бетонораздатчиков или кюбелей. Подъем или опускание машины должно осуществляться при параметрах 15о по верхнему подъему и 10о по нижнему, а скорость оборудования рассчитывается в 1 м/с. Разлив арболитовой смеси по формам делают на высоте до 1 метра.

Уплотнения раствора производят с содействием вибропреса или ручной трамбовки. Для производства небольшого количества блоков нужно применить мини-станок. Изготовление своими руками арболита не представляет особых трудностей, однако на промышленных объектах применяется специальное оборудование по смешиванию, изготовления блоков. На некоторых заводах присутствуют тепловые камеры с ИК-излучением или ТЭНом, что позволяет определить нужную температуру для высыхания блоков.

Блочные формы для арболита

Существуют разные блочные формы для обработки арболита, а примерные величины могут составлять: 20х20х50 см или 30х20х50 см. Выпускаются предметы и прочих размеров, особенно для постройки вентиляционных систем, покрытий и так далее. Формы можно приобрести в строительных магазинах или же подготовить все своими руками. Для этого, используют доски толщиной в 2 сантиметра, которые скрепляют до образования определенной конструкции. Внешне форма отделывается фанерой, или пленкой.

В зависимости от класса арболитовые блоки применяют в малоэтажном строительстве для возведения несущих стен, перегородок, а также для теплоизоляциии и звукоизоляции конструктивных элементов здания.

Процесс производства своими руками

Рассмотрев технологию изготовления состава арболита, можно приступать к выполнению работы самостоятельно. Для начала потребуются некоторые материалы и оборудование:

  • специальный лоток для смеси;
  • падающий и вибрирующий стол;
  • стол с ударно-встряхивающим эффектом;
  • разъемные формы и подставки;
  • поддон из металла для форм.

Производить арболит своими руками очень сложно без использования необходимых инструментов, станков и оборудования. Как правило, на производстве потребуются некоторые приспособления:

1. Для получения качественного раствора необходимо применить бетономешалку. Разумеется, в процессе можно все сделать своими руками, однако придется, много времени потратить на получение раствора необходимой консистенции.

2. Для формирования структуры блоков важно приобрести формы соответствующих размеров. Как правило, арболит имеет прямоугольную форму, а в производстве используются пластиковые формы.

3. При помощи станка вы профессионально измельчите щепу.

4. Используя пресс можно получить хорошую плотность материала при трамбовке, при этом важно убрать воздух из консистенции. В качестве приспособлений применяется вибростол.

5. Обязательное наличие камеры для сушки арболита, что позволит его превратить в твердую однокомпонентную структуру.

6. В домашних условиях понадобится лопата для загрузки смеси в формы, а для скрепления блоков используют армирующую сетку.

При наличии выше перечисленных приспособлений можно производить в день около 350 – 450 м3 строительного раствора в месяц. Места для монтажа потребуется около 500 квадратных метров, а затрат на электроэнергию пойдет 15-45 кВт/ч. Для самостоятельного процесса органические средства заливаются водой, а также цементом до образования однородной смеси. Все пропорции и расчеты отображены в таблице 1, главное чтобы вышедшая смесь была сыпучей.

Перед заливкой раствора в формы, их обмазывают с внутренней стороны молочком известковым. После этого, средство скрупулезно и аккуратно укладывают и утрамбовывают специальными приспособлениями. Верхняя часть блока выравнивается с помощью шпателя или линейки и заливается раствором штукатурки на слой в 2 сантиметра.

После образованной формы арболита его потребуется тщательно уплотнить с помощью деревянной конструкции, оббитой железом. Прочными и надежными считаются блоки, которые выстоялись и схватились на протяжении десяти дней при температуре 15о. Чтобы арболит не пересох, рекомендуется периодически поливать его водой.

Технология изготовления арболита своими руками не представляет определенной сложности, а поэтому все работы провести легко при наличии необходимых инструментов и приспособлений. При соблюдении правил и критериев производства, правильного расчета компонентов строительный материал получится качественным и прочным для применения.

Советы экспертов при изготовлении блоков своими руками

Рекомендации специалистов по производству арболитных блоков основаны на практике их использования и применения. Чтобы достичь высокого качества продукции необходимо следовать некоторым факторам. В производстве рекомендуется применять не только большую щепу, но и использовать опилки, стружку из дерева. Обработка консистенции и выдавливание из него сахара позволяет избежать дальнейшего вспучивания строительного материала, что не приспускается при сооружении дома.

В процессе изготовления раствор следует тщательно перемешивать, чтобы все части оказались в цементе. Это важно для качественного и прочного скрепления древесины и иных материалов в блоке. В производстве не менее важным остается добавление следующих компонентов, таких как алюминий, гашеная известь и так далее. Весь состав образует дополнительные свойства арболита, например жидкое стекло не позволяет впитывать влагу блокам, а известь служит в качестве антисептика.

Хлористый калий способствует уничтожению микроорганизмов и других веществ, что не благотворно влияют на структуру. При добавлении всех компонентов стоит следить за таблицей пропорциональности, чтобы готовый раствор соответствовал требованиям производства арболитных блоков.

Производство арболита своими руками: состав, пропорции, оборудование

Арболит (он же деревобетон) все чаще используется в малоэтажном строительстве. Во многом это связано с простотой производственной технологии и доступностью исходных компонентов. Именно о технологии, оборудовании и способах производства я расскажу в этой статье.

Производственное оборудование

Оборудование для производства арболита не отличается особой сложностью и габаритами. Его можно разместить на приусадебном или дачном участке, в любом боксе, цеху или просто на улице под навесом. Главное условие – наличие электроэнергии и удобство эксплуатации. Полный перечень заводского оборудования, необходимого для промышленного производства арбоблоков выглядит следующим образом:

  • Шредер – измельчитель органических наполнителей (щепы, соломы и т.д.).
  • Ёмкость для приготовления и розлива химических компонентов.
  • Дозатор цемента.
  • Дозатор органических наполнителей.
  • Дозатор заполнителей для бетонного раствора.
  • Бетоносмеситель для арболита принудительного типа действия.
  • Подъёмно-поворотный бункер для приёма и дальнейшего розлива готового арболитового раствора.
  • Система лебёдок для погрузочно-разгрузочных работ.
  • Самозапечатываемые формы для отливки блоков.
  • Вибропресс для арболита.

При кустарном производстве деревобетона, для собственных нужд, могут использоваться самодельные станки.

Состав арболита

Состав арболита регламентируется ГОСТ №19-222-84. Готовая к заливке арболитовая смесь состоит из следующих компонентов:

  • Цементный раствор;
  • Химические добавки;
  • Органические наполнители.

Цемент

В качестве связующего компонента в производстве используется раствор на цементной основе. По ГОСТу, портландцемент для приготовления арболита должен иметь марку не ниже М-400.

Таблица . Технические характеристики цемента М-400

Добавлять песок в состав арболитного раствора не рекомендуется, так как это ухудшает показатели сцепки органических наполнителей с цементным вяжущим веществом. В результате блоки становятся менее прочными и склонными к расслоению и растрескиванию.

Химические добавки

Химические добавки предназначены для улучшения эксплуатационных характеристик арболита. В состав арболита входят следующие химические компоненты:

  1. Сернокислый алюминий, он же сульфат алюминия – неорганическая соль, хорошо растворимая в воде. При изготовлении арболита он используется в качестве гидроизолятора, увеличивающего стойкость материала к воздействию сырости.

    Из-за высокой гигроскопичности, хранение сернокислого алюминия должно производиться в помещениях с низким уровнем влажности и в герметичной упаковке.

  2. Хлористый кальций – химический элемент, получаемый при промышленном производстве соды. Добавляется в арболитную смесь для связывания сахаров, содержащихся в органических заполнителях, что значительно повышает прочностные характеристики получаемого цементного раствора и позволяет повысить степень его сцепления с древесными компонентами.
  3. Жидкое стекло – водорастворённые силикаты натрия или калия. При изготовлении смеси для деревобетона, жидкое стекло выполняет роль отвердителя, а также для придания цементному раствору кислотоупорных и гидроупорных свойств.
  4. Гашёная известь добавляется в раствор для нейтрализации содержащихся в органических добавках природных сахаров и улучшения связующих качеств цемента и древесины.

Органические заполнители

В качестве наполнителя при производстве арболита используются отходы деревообрабатывающего производства. Главное отличие арболита от других видов лёгких бетонов состоит в том, что в его состав входят достаточно крупные компоненты – древесная щепа, костра льна, конопляная солома и т.д. От процентного содержания органического наполнителя зависят основные показатели материала: плотность, гигроскопичность, коэффициент теплопроводности и т.д.

  • Древесная щепа – наиболее часто используемый заполнитель. Согласно ГОСТу, её размер не должен превышать 4 х 1 х 0,5 см. В связи с этим, технические характеристики арболитовых конструкций отличаются от характеристик опилкобетона и фибролита (стружкобетона).

    Древесная щепа – главная составляющая арболитового блока

    Нужный размер органической фракции получают при помощи специального станка-щепореза (шредера). Содержание щепы в общем объёме арболита может быть разным, и составлять от 30% до 90%.

  • Льняная костра добавляется в таком же виде, в каком она получается на льноперерабатывающем заводе после предварительной обработки сырья.
  • Конопляную солому перед использованием следует перемолоть в шредере.

Согласно техническим нормативам, льняные и конопляные наполнители должны иметь следующие размеры:

  • Длина – от 15 до 25 мм.
  • Ширина – от 2 до 5 мм.

В разных регионах для производства арболитовых блоков и панелей могут применяться и другие органические заполнители: рисовая и гречневая солома, отходы обработки хлопчатника и т.п.

В таблице даны технические характеристики арболита, изготовленных с применением разных органических наполнителей:

Технология производства

Технология производства арболита имеет ряд отличительных особенностей, которые касаются подготовки сырья, рецепта приготовления, дозировки компонентов. Её соблюдение обязательно как при промышленном выпуске, так и при производстве арболита своими руками в домашних условиях.

Подготовка органических заполнителей

Для деревобетона может использоваться щепа древесины хвойных пород – ели, сосны, пихты, а также лиственных деревьев с твёрдой древесиной – дуба, ясеня, берёзы.

Не рекомендуется применять в производстве щепу лиственницы и бука из-за химического состава – их древесина содержит значительно больше сахаров, что приводит к значительному снижению качества блоков. В крайнем случае, при производстве раствора с лиственничной или буковой щепой, придётся, как минимум, вдвое увеличить количество химдобавок – извести или хлористого кальция.

Щепа березы и ясеня – лучший наполнитель для арболитового блока

Первым шагом древесные отходы измельчаются посредством щепореза до размеров, регламентируемых ГОСТ №19-222-84 – не более 40х10х50 мм. Фактически же оптимальными размерами древесной фракции для формовки блоков являются 25х5х3 мм, так как более крупные компоненты хуже связываются цементным раствором и более склонны к расслаиванию в процессе эксплуатации.

После измельчения щепа просушивается. На крупных производственных линиях для этих целей применяют специальные сушилки барабанного типа, в которые подаётся горячий воздух.

Если арболит производится в домашних условиях, щепу складируют для просушки под навесами на срок не менее месяца, при температуре воздуха +15С.

Непосредственно перед замешиванием щепа замачивается на 6-8 ч в растворе воды с химическими добавками. Вода для этого должна соответствовать ГОСТу №23-732-79, где регламентируется её химический состав, кислотность и т.д. На деле же, при кустарном производстве деревобетона применяется любая доступная вода – из водопровода, реки или колодца. Единственное необходимое условие – она должна быть чистой и иметь температуру не ниже +15…+20С. После замачивания древесный наполнитель должен иметь влажность не более 30%.

Костра льна и солома конопли, для удаления из неё излишков сахаров, выдерживается на открытом воздухе не менее 2 – 3 месяцев при плюсовой температуре, либо замачивается в известковом молоке на 3-4 дня. Известковый раствор приготавливается в следующих пропорциях на 1 куб. м органики.

 Органический заполнитель Гашёная известь Вода Дополнительные условия
1 куб. м костры льна или конопли 2 – 2,5 кг 150 – 200 л в зависимости от влажности наполнителя Смесь перемешивается каждые 2 дня

Пропорции смеси

Пропорции замеса могут незначительно изменяться, в зависимости от класса прочности деревобетона. Для получения более высокой марки арболита увеличивают долю цемента в общем объёме раствора. Ниже представлены рекомендуемые пропорции замеса раствора для деревобетона различных марок на куб готового раствора:

Марка Портландцемент М-400 Органический наполнитель Химдобавки Вода
М-5 200 – 220 кг 280 – 320 кг 12-14 кг 350 – 400 л
М-15 250 – 280 кг 240 – 300 кг 12 кг 350 – 400 л
М-25 300 – 330 кг 240 – 300 кг 12 кг 350 – 400 л
М-50 350 – 400 кг 220 – 240 кг 10-12 кг 350 – 400 л

Химические добавки могут добавляться как по отдельности, так и комплексно. К примеру, строительные нормативы СН №54982 допускают смешивание сернокислого алюминия с известью в пропорции 8 кг и 4 кг на куб раствора.

Очерёдность загрузки

При замесе раствора важно соблюдать не только пропорции, но и очерёдность загрузки компонентов. Для изготовления качественной арболитной смеси обычные бетоносмесители, используемые для замеса бетона, не подойдут – щепа в них не сможет хорошо перемешаться с цементным раствором. Бетономешалка для арболита должна быть принудительного типа, например отечественные модели серии СБ, РН, импортные ZZBO и т.д. В них перемешивание компонентов производится не вращением барабана, а расположенным внутри него шнеком или лопастью.

Таблица 3. Технические характеристики принудительных смесителей серии СБ:

  1. Первым шагом в барабан смесителя насыпается подготовленная щепа в нужной пропорции.
  2. Затем бетоносмеситель запускается и в него заливается вода с растворёнными в ней химическими добавками. Органический заполнитель размешивается с химраствором в течение 30-60 секунд, чтобы щепки хорошо пропитались.
  3. После этого добавляется цемент и продолжается размешивание смеси в течение 3-5 минут, до получения однородной массы.

Формирование блоков

Формовка арбоблоков происходит с помощью специальных матриц, в которые заливается готовый раствор. Они изготавливаются из нержавеющей стали разборной конструкции для более лёгкого извлечения блоков.

Также такие формы можно изготовить самому из дерева или фанеры, обив их изнутри линолеумом или жестью. Размеры ячеек матрицы могут быть различными, в зависимости от потребностей в блоках тех или иных габаритов.

Трамбовка производится вручную, либо для этого используется вибростанок. В первом случае раствор заливается в формы слоями толщиной в 5 см, каждый из которых уплотняется металлической трамбовкой.

Во втором случае уплотнение раствора производится на вибростоле, которым обычно оборудуется промышленный станок для производства арболита.

Также при формовке для уплотнения раствора можно использовать ручной или механический пресс. Чтобы из уплотняемых блоков лучше выходил воздух, они периодически прокалывается металлическим стержнем.

Сушка

Сушка готовой продукции является завершающим этапом производственного процесса. В связи с особенностью конструкции, наилучшим вариантом является мягкий режим просушки.

Пропаривать арбоблоки по примеру железобетонных конструкций, не рекомендуется, так как материал теряет прочность из-за возрастающих внутренних напряжений. По этой же причине не следует пытаться ускорить высыхание блоков при помощи сушильных камер и других приспособлений.

Оптимальный режим просушки для арболита – температура 40-50 градусов, при влажности воздуха порядка 70-80%. В этом случае блоки набирают необходимую для распалубки прочность уже спустя 18-20 ч. что составляет около 1/3 от окончательной марочной. Дальнейшая выдержка материала производится при температуре 15-20 С в течение одной-двух недель – за это время деревобетон набирает окончательную прочность.

Арболит бетон: состав, свойства, область применения

К категории легких строительных материалов относится арболит бетон. Представляет собой деревобетонные блоки крупнопористой структуры. Применяется при возведении стен в индивидуальном малоэтажном строительстве. Процесс производства несложен, арболитовые блоки можно изготовить своими руками.

Состав арболит бетона

От других стройматериалов на основе цемента арболит отличается тем, что в состав входит дерево, а именно древесная щепка, отходы деревообрабатывающей промышленности. Древесный компонент может заменяться кострами конопли, льна, хлопчатника, рисовой соломой. Состав деревобетонных блоков, определенный ГОСТ 19222–84:

  • Вяжущее вещество — цемент марки не ниже М300.
  • Органический наполнитель — измельченная древесина.
  • Химические добавки:
    • хлористый кальций;
    • сульфат алюминия;
    • жидкое стекло.
  • Вода.

Важно тщательно и долго перемешивать древесный наполнитель и цемент в процессе изготовления арболит бетона своими руками. Рекомендуемый специалистами размер щепы — до 25 мм в длину и 10 мм в ширину.

Применение химических добавок необходимо для нейтрализации сахара, который содержится в древесине.

Древесина содержит в себе следы сахара, провоцирующие гниение материала в будущем. Поэтому химические добавки в смеси нужны для нивелирования сахара и повышения бактерицидных свойств продукции, а также для повышения адгезии наполнителя и цемента, улучшения пористости, ускорения процесса твердения смеси. Если изготавливается арболитовый бетон своими руками и сложно найти химические ингредиенты раствора-основы, можно заменить их жидким стеклом или гашеной известью, либо использовать оба в равных частях. Заливаемая в формы щепа обрабатывается антисептиком во избежание дальнейшего появления плесени и грибков. Строительные стандарты регламентируют не размеры и пропорции блоков, а состав, соответствие продукции заявленным свойствам арболита.

Преимущества и недостатки

Технология производства и характеристики деревобетона на выходе схожи с изготовлением других видов бетонных блоков. При этом специалисты выделяют достоинства и недостаточные качества арболит бетона, что сведены в таблице:

ПреимуществаНедостатки
Стойкость к гниению, горению, появлению грибка и плесениНизкая влагостойкость
Невозможно использовать для строительства помещений с заведомо высокой влажностью, т. к. впитывает, но не удерживает влагу
Легкость в укладке и отделкеНеточность геометрических размеров
Оптимальное соотношение цена-качествоНепригодность для использования в многоэтажном строительстве, ограниченность сферы применения
Звуко-и теплоизоляционные качестваОграниченность в выборе варианта отделки стен
Малый вес блоковНаличие на рынке низкокачественной продукции, недостаточный выбор
Не растрескивается при нагрузкахНизкая плотность блоков
Простая технология изготоаленияДолговечность материала ниже остальных бетонов
ЭкологичностьДлительный период твердения в процессе изготовления

Свойства материала

Отличные теплоизоляционные свойства арболита позволяют накапливать тепло в здании.

Главное, что выделяет арболит из ряда похожих материалов, это исключительные теплоизоляционные свойства. Теплопроводность равна 0,08 ВТ, что выше показателей кирпича и других бетоноблоков. Материал имеет свойство аккумулировать тепло в доме, создает комфортные условия без резких перепадов температур. Учитывая высокую гигроскопичность материала, важно правильно подобрать материалы для отделки стен, выполненных из деревобетона.

Области использования

Применяется повсеместно в индивидуальном строительстве. Т. к. материал легкий, транспортировка не вызывает сложностей. Высокие теплоизоляционные качества обуславливают применение арболит бетона в строительстве несущих стен построек. Однако не имеет смысла укладывать «теплые полы» в комбинации с этим материалом, эффекта от полов не будет, т. к. деревобетон удерживает тепло.

состав, арболит своими руками, пропорции смеси на 1 куб, из чего делают арболитобетон, рецепт из соломы и цемента

Арболитовые блоки – это популярный строительный материал, который применяют при строительстве домов, внутренних ограждений, гаражей и прочих построек. Такая востребованность арболитовых блоков связана с тем, что он имеет массу преимуществ, среди которых долговечность, простота укладки и отличные технические свойства.

Состав

При изготовлении арболитовых блоков применяют натуральные и химические компоненты. При их грамотном соединении с соблюдением пропорции можно получить изделие необходимой марочной прочности, которое в последующем можно будет использовать для возведения одноэтажных или двухэтажных построек.

Древесина

Дерево относится к органическим материалам, так что в его клетках содержится вода. Кроме воды, дерево содержит сахар, от которого необходимо избавиться. Процесс изготовления начинается с того, что щепку нужно нарубить.

Для этого используют сырую древесину. Затем она должна побыть рядом с химическими реагентами, чтобы весь сахар покинул ее. Как известно, дерево – это материал, имеющий низкие адгезивные свойства. Если не соблюдать технологии, то это станет причиной разрушения блока непосредственно в руках.

На фото-щепки в арболитовых блоках:

Размер щепки оказывает влияние на количество используемого цемента для получения 1 м3 арболита. Если задействовать щепки из сухой древесины, то фракция получится мелкой. Она будет иметь игольчатую структуру, а это потребует использование большего количества цемента. Щепка игольчатой формы должна присутствовать только в определенном количестве.
На 1 м3 арболита потребуется

Всего на 1м3 арболита необходимо:

  • 8-10 кг химических составляющих;
  • 250 кг цемента;
  • 250 г щепы.

При замесе щепки ее нужно хорошенько смочить, чтобы вся свободная влага не выделялась, а сама щепка была укрыта слоем цемента. Именно он при трамбовки блока сможет соединить щепки между собой.

Сернокислый алюминий

Этот компонент используют при изготовлении арболита, а относится он к химическим составляющим. Его задача – это расщеплять сахара.

На фото – арболитовые блоки с алюминием

При добавлении сернокислого алюминия в смесь удается сократить время, которое требуется для набора прочности. При этом на схватываемость это не влияет.

Хлористый кальций

При использовании его в сочетании с сернокислым алюминием удается побороть всех микроорганизмов в дерево. Еще этот компонент оказывает противогнилостные свойства и не дает возникать очагам внешнего поражение готовых блоков.

На фото- арболитовые блоки с хлористым калием

Если хлористый кальций отсутствует, заменить его может хлористый алюминий.

Жидкое стекло

При помощи этого компонента можно закрыть поры в древесине и избежать проникновения влаги внутрь щепы. Применять жидкое стекло рекомендуется после того, как были устарнены все сахара и есть необходимость в защите от проникновения влаги. Жидкое стекло могут применять в качестве модификатора для схватывания строительной массы, но только делать это предельно осторожно.

А вот какой зимний клей для газосиликатных блоков самый популярный и чаще всего используемый, рассказывается в данной статье.

Какие блоки для внутренних перегородок самые подходящие, рассказывается в данной статье.

Какие плюсы и минусы дома из газоблока существуют и стоит ли использовать такой строительный материал, рассказывается в данной статье: https://resforbuild.ru/beton/bloki/gazobloki-plyusy-minusy.html

Возможно вам так же будет интересно узнать о том, какие технические характеристики газоблоков существуют.

Известь гашеная

Этот вариант станет отличной заменой первым двум химическим составляющим, если существуют сложность в их приобретении. Гашеная известь имеет уникальные способности выводить сахар и бороться с различными микроорганизмами, которые содержаться в древесине.

Как сделать своими руками

Изготовить арболитовые блоки совершенно несложно своими руками. Для этого не нужно использовать особое оборудование. Главное в этом деле, это четко придерживаться необходимых пропорций.

Рецепт смеси и пропорции

При изготовлении арболита важно строго придерживаться соотношениямежду всеми компонентами.

Расход каждого материала составит:

  • соотношение наполнителей 80-90%;
  • приблизительный объем цемента в общей смеси – 10-15%;
  • объем воды – 60-70%;
  • химические составляющие – 2-4%.

Чтобы получить 1 м3 материала, необходимо использовать следующие пропорции: 300 г наполнителей и 400 л воды. При обработке наполнителей применяют известковый раствор.

На видео – как сделать арболитовые блоки своими руками:

Для его приготовления необходимо воспользоваться следующей пропорцией:

  • известь – 2,5 кг
  • ,вода – 200-300 л на 1 м3 древесной щепы.

Для ускорения процесса затвердевания смеси и улучшения ее свойств применяют указанные выше химические компоненты. Для производства 1 м3 арболита уйдет до 10 кг химических компонентов. Если четко соблюдать пропорции, то состав смеси получается классическим. При смене пропорций вы рискуете получить некачественный строительный продукт.

Как залить блоки

Перед тем как переходить к заливке подготовленного материала, нужно позаботиться про оснащение:

  • емкость для замешивания смеси или бетономешалку;
  • формы съемного типа;
  • лопату;
  • сито;
  • поддон из металла.

Что касается форм для заливки материала, то их можно сделать своими руками или купить готовый вариант в строительном магазине. Если вы решили выбрать первый способ, то тогда нужно взять доски толщиной до 2 с. Скрепить их по необходимым размерам. С наружной стороны оббить их пленкой.

На видео – дом из арболитовых блоков своими руками:

Формы установить в темное место, накрыть пленкой и ждать примерно 21 день. Держать форму на воздухе при показателях температуры не менее 15 градусов. Если вы впервые занимаетесь изготовлением арболитовых блоков, то первая партия должна быть небольшой. Таким образом, вы сможет оценить качество и правильность пропорций используемых компонентов.

А в данной статье можно прочесть про отрицательные отзывы о арболитовых блоках.

Так же будет интересно узнать о том, что лучше газоблок или пеноблок, поможет понять видео из статьи.

А вот что дешевле пеноблок или газоблок и что всё таки лучше использовать, очень подробно рассказывается в данной статье.

Так же будет важно узнать о том, какие размеры бетонных стеновых блоков существуют и как правильно их подобрать. Для этого стоит перейти по ссылке.

А вот какие существуют плюсы и минусы бани из шлакоблока, рассказывается в данном видео.

Арболитовые блоки – это широкоприменяемый строительный материал при взведении домов различного назначения. Изготовить блоки можно самостоятельно, если знать состав материала и пропорции всех компонентов. При четком соблюдении всех правил и рекомендаций можно получить качественные и прочнее арболитовые блоки, ни чем не хуже от тех, которые изготовлены промышленным путем.

каркас и заливка своими руками

Деревобетон или монолитный арболит широко известен в строительстве. Материал обладает хорошими техническими характеристиками. Его применение при возведении зданий имеет свои достоинства и недостатки. Что представляет собой арболитовый состав, и какие особенности монолитных сооружений?

Свойства материала и особенности его применения

Монолитный арболит представляет собой смесь измельченной древесины и цемента. В качестве дополнительных компонентов в материал добавляют рисовую дробленую солому, стебли хлопчатника и химические вещества, которые расщепляют древесные сахара.

Благодаря своему составу арболит обладает хорошей тепловой и звуковой изоляцией. Материал достаточно огнестойкий и легко поддается обработке. Одной из основных особенностей монолитного арболита является его небольшой вес. За счет этого фундамент под сооружения выстраивается облегченного типа.

При строительстве домов учитывается высокое влагопоглощение материала. Поэтому применение деревобетона предусматривает хорошую гидроизоляцию всех стен:

  • поверхность фасада защищается облицовкой или штукатуркой;
  • сверху на фундамент укладывается гидроизоляционное покрытие;
  • навес карниза над стенами должен быть не менее пятидесяти сантиметров.

От нижней части стены до высшей точки грунта следует соблюдать дистанцию в пятьдесят сантиметров.

Виды

Монолитный арболит изготавливается двух типов:

  1. Конструкционный. Применяется для несущих конструкций здания и перегородок. За счет невысокой прочности используется только в строительстве малоэтажных сооружений. Конструкционный материал согласно прочности имеет классификацию  В3,5, В3, В2,5,В2, В1,5 и В1, что соответствует пределу плотности от 500 до 850 килограмм на метр кубичный.
  2. Теплоизоляционный.  Таким раствором заливают стенные проемы. По прочности делится на классы В0,75 и В0,5. Плотность материала составляет не более 500 килограмм на метр кубичный.

На степень прочности заливки из арболитной смеси  влияет марка используемого цемента и уровень уплотнения состава. Для повышения износостойкости сооружений материал обязательно армируют.

Способы монолитного строительства

Строительство монолитных зданий осуществляется двумя основными методами:

  1. Непрерывная поэтажная заливка. При таком варианте возведения домов для фундамента сооружается несъемная опалубка. Состав для заливки подается из локальной бетонно-растворной установки или автоматического миксера.
  2. Заливка поясов. Опалубка монтируется для всего периметра дома. Изначально выставляется необходимая ширина деревянной формы, которую постепенно продвигают снизу вверх для формирования следующего пояса.

Нередко при монолитном строительстве используют сегментную заливку, при которой за один раз заливается определенного размера стена с боковыми ограничениями.

Технология монолитного строительства

Для монолитных зданий из арболита нет необходимости сооружения железобетонного пола. Легкий деревобетон устанавливают на ленточный фундамент. Ширина его должна соответствовать толщине стен.

Технология строительства монолитных зданий не имеет особой сложности. Часто такого типа дома возводят своими руками:

  1. При заливке фундамента выставляются стержни арматуры до уровня пола следующего этажа здания. Чем больше планируется выстроить этажей, тем толще подбираются детали армирующей конструкции.
  2. Сбитая необходимого размера опалубка укладывается на фундамент так, чтобы нижняя ее часть была внахлест ленточному основанию. Детали формы для заливки соединяются шпильками из металла. Все боковые щели закрываются деревянными обрезками. После полного застывания арболита опалубка снимается, а крепежные детали обрезаются, чтобы не было ненужных отверстий.
  3. В правильно установленную опалубку заливается раствор арболита. Состав смеси готовится согласно типу стены – внутренняя или наружная. Форма должна быть наполнена так, чтобы края ее от верхнего среза оставались на пять сантиметров свободными.
  4. Залитый раствор тщательно утрамбовывают по всей поверхности. Для этого используют металлический штырь. Такое уплотнение позволит устранить воздушные пузырьки из материала, способствуя повышению его прочности.
  5. Опалубка снимается только после полного застывания части стены. После этого ее очищают, пропитывают маслянистым веществом и выставляют для заливки следующего участка. Перемещение формы проводится в одной плоскости, пока не замкнется периметр. Далее выполняется подъем на верхние участки.
Монолитный арболит, вид внутри опалубки при засыпки и трамбовании

Когда нижние стены будут полностью залиты, выполняется установка пола следующего этажа. Для этого специально монтируется опалубка, которая заполняется арболитовой смесью или выкладываются для перекрытия плиты из железобетона. Затем аналогично первому этажу заливаются верхние стены.

Теплоизоляционным арболитным раствором заполняют проемы между стенами из двойного кирпича. Такая конструкция значительно снижает теплоотдачу кирпичных сооружений и намного упрощает строительство здания.

Приготовление арболитовой смеси

Качество раствора из арболита для монолитного строительства зависит от соблюдения пропорций смеси и правильного ее изготовления.

Подготовка компонентов

В состав раствора для заливки из арболита входит более 80 процентов щепы хвойной древесины. Она имеет определенные размеры и форму. Стандартная величина сырья – 25*5*10 миллиметров. Если древесные частицы имеют больший объем, то прочность материала снижается. При меньших размерах требуется большее количество цементной смеси и при этом уровень теплоизоляционных свойств понижается.

В состав раствора для заливки из арболита входит более 80 процентов щепы хвойной древесины

Для цементной основы используется портландцемент. В основном используют марки М500 или М400. Для быстроты твердения смеси вносятся минеральные добавки, такие как сернокислый алюминий, хлористый кальций или жидкое стекло. Также хорошо зарекомендовала себя гашеная известь.

Для заливки монолитных сооружений арболитовый раствор готовится в зависимости от его типа. Для конструкционного деревобетона на 1 метр кубический требуется такие пропорции основных компонентов:

  • для плотности В1 – на 360 литров воды используется 210 килограмм цемента и 210 килограмм измельченной древесины;
  • В2 – соединяется 350 килограмм цемента, 230 килограмм щепы и 400 литров воды;
  • класс В2,5 требует 250 килограмм хвойного наполнителя, 440 литров жидкости и 380 килограмм портландцемента.

Для замеса арболита, который используют в теплоизоляционных целях на 1 кубический метр в зависимости от плотности необходимо от 280 до 300 килограмм цемента, 300- 430 литров води и от 170 до 190 килограмм щепы древесины.

Все расчеты используются при условии добавления цемента марки М400. Если применяется сухой раствор М 500, то для пропорции берется во внимание коэффициент 0,96.

Технология изготовления раствора

Процесс замеса состоит из таких этапов:

  1. В сухом виде смешивается щепа и минеральная или химическая добавка. После этого добавляется портландцемент. Все компоненты размешиваются до однородного состояния.
  2. В подготовленный состав небольшой струей льется вода. При этом следует беспрерывно перемешивать раствор строительным миксером или бетономешалкой. В готовом арболитовом материале для заливки вся щепа должна быть покрыта цементной смесью. Процесс смешивания компонентов занимает не менее 5 минут.

Правильно сделанный раствор должен быть влажным, но не сильно мокрым. При добавлении в качестве добавки извести для ее полного погашения раствор смешивается в течение 20 минут.

Роль каркаса в монолитном строительстве

Технология строительства монолитных зданий включает установку каркаса. От вида и размеров таких опор зависит прочность здание и возможность возведения более двух этажей. Также с помощью каркаса устанавливается форма будущей постройки.

Для монолитных сооружений из арболита используется два типа несущей конструкции:

  1. Деревянная. Такой вариант применяется только для малоэтажных домов. Рамки из дерева монтируются в вертикальном положении на расстоянии от 120 до 150 сантиметров друг от друга.  При этом обязательно включаются оконные и дверные проемы. Деревянный каркас повышает прочность зданий. С помощью досок равномерно распределяется вся нагрузка при усадке.
  2. Металлическая. Такая каркасная основа выстраивается из сальных стержней и сеток. Для оконных проемов применяются металлические балки. Данный вид основы более надежен и позволяет сооружать этажные монолитные здания из арболита.

Деревянный каркас перед установкой обрабатывается специальными антисептическими веществами. К такой основе можно монтировать стропила и удобно устанавливать оконные и дверные конструкции.

Деревянный каркас перед установкой обрабатывается специальными антисептическими веществами

Детали металлического каркаса требуют предварительной защиты антикоррозийными средствами. Бескаркасное возведение зданий из арболита в монолитном строительстве не применяется. Такой вариант подходит только для сооружений из деревобетонных блоков.

Преимущества и недостатки монолитного арболита

Достоинством монолитного строительства из арболита является хорошие технические характеристики материала. Среди преимуществ деревобетона можно выделить:

  1. Огнестойкость.  Невзирая на легковоспламеняющийся древесный состав арболит не горит. Такое свойство материалу придает цементная смесь и предварительная обработка щепы антипиренами.
  2. Высокая теплоизоляция.  Деревобетон сохраняет тепло в помещении в пять раз лучше, чем кирпич из глины. Степень теплоизоляционных характеристик монолитных строений зависит от класса материала.
  3. Легкий вес. Такое свойство деревобетона позволяет возводить облегченные виды фундамента.
  4. Несложная обработка материала. Арболит можно без особых усилий разрезать или распилить. Все крепежные элементы установить достаточно просто, что значительно экономит время на выполнение внутренних работ в здании.
  5. Хорошие шумоизоляционные свойства. Коэффициент поглощения звука достигает 0,6 при наибольшей частоте 2000 герц.
  6. Морозостойкость.  Деревобетон имеет устойчивость к низким температурам порядка 50 циклов.
  7. Длительный срок эксплуатации. Монолитный арболит сохраняет свою структуру и не дает трещин и расколов на протяжении сорока пяти лет.
  8. Биостойкость материала.  Деревобетонные конструкции не подвержены грибковым поражениям, плесени и гниению.

Наряду с многочисленными достоинствами монолитный арболит имеет свои недостатки:

  • высокая степень поглощения влаги.
  • неустойчивость к агрессивному химическому воздействию.

Материал быстро промокает и разбухает. Поэтому при сооружении зданий обязательно применяется защита стен. Строительство монолитных домов из деревобетона проводится только в условиях пониженной влажности воздуха. Также для установки арболитовых стен требуется надежная гидроизоляция основания.

Деревобетонные конструкции достаточно привлекательны для грызунов, которые легко проделывают в нем хода и норы.

Достоинства монолитного арболита намного превышают недостатки. Правильное сооружение конструкции для заливки и соблюдение пропорций при замесе раствора намного повысит технические качества материала, а надежная защита от влаги увеличит его эксплуатационный срок.

A Structural Efficient Material Option

Schubverbindungsmittel in weitgespannten Holz-

Beton-Verbundkonstruktionen “[Сдвиговые ключи как

Соединители в длиннопролетном дереве-бетоне

Composite Structures], Bauingenieur. 77, No. 5,

2002 [на немецком языке].

14. Blaß, H., & Schlager, M., «Trag- und Verform-

ungsverhalten von Holz-Beton-Verbundkonstrukt-

ionen. Тейл 1 ”[Прочность и жесткость

древесно-бетонных композитных конструкций.Часть 1],

Bauen mit Holz, No. 5, 1996 [на немецком языке].

15. Уивер К., Дэвидс, В. и Дагер, Х., «Тестирование

и анализ частично композитного волокна —

Армированный полимерный клееный брус

Балки

», Журнал мостостроения, ASCE, Vol. 9,

No. 4, 2004.

16. Мунгва, М.С., Джуллиен, Дж., Фоуджет, А., &

Хентгес, Г., «Экспериментальное исследование композитной балки

из дерева и бетона с INSA-Hilti, новый гибкий соединитель, работающий на сдвиг

, Строительные материалы и

Строительные материалы, №13, 1999.

17. Мантилья-Карраско, Э.В. и Оливейра, С.В., «Be-

havior of Composite Timber-Concrete Beams», в

Труды Первого симпозиума RILEM по

Timber Engineering, RILEM , Кашан, Франция, 1999.

18. Готье, Д., Составное деревянно-бетонное здание

Член

, Патент США 5,561,957, 1996 г.

19. Гутковски, Р., Балог, Дж., Наттерер, Дж., Brown, K.,

Koike, E., & Etournaud, P., «Лабораторные испытания

композитных древесно-бетонных балок и

образцов полов» в Proceedings of the World Confer-

ence of Timber Engineering , Уистлер, Б.C., Canada,

2000.

20. Гутковски, Р., Браун, К., Шигиди, А., &

Наттерер, Дж., «Исследование зубчатых композитных соединений

между деревом и бетоном», Журнал структурного

Engineering, ASCE, Vol. 130, No. 10, 2004.

21. Батон, Л., и Граф, М., «Сплошная древесина —

бетонно-композитная система», в Proceedings of

the World Conference of Timber Engineering, Whistler ,

г. до н.э., Канада, 2000 г.

22. Clouston, P., Bathon, L., & Schreyer, A., «Сдвиг

и характеристики изгиба новой бетонной композитной системы Wood-

», Journal of Structural

Engeering, ASCE, Vol. 131, No. 9, 2005.

23. Гурфинкель, Г., Wood Engineering, Southern Forest

Products Association (SFPA), New Orleans,

Lousiana, 1973.

24. Stalnaker, J., & Harris , EC, Structural Design in

Wood, второе издание, Kluwer Academic

Publishers, Бостон, Массачусетс., 1997.

25. Deutsches Institut für Normung (DIN) eV, DIN

V ENV 1995-1-1 Еврокод 5. Entwurf, Berechnung und

Bemessung von Holzbauwerken, Teil 1-1: Allgemeine

Bemessungelsregeln, für den Hochbau,

Берлин, Германия, 1994 [на немецком языке].

26. Андриамитанцоа, Л.Д., «Лекция A19: Creep», в серии лекций

STEP / Eurofortech, под редакцией Бласса, Х.Дж.,

и др., Centrum Hout, Нидерланды, 1995.

27. Шенцлин, Дж., Цум Лангцайтверхальтен фон Бреттста-

пель-Бетон-Фербундекен, диссертация, Университет

Штутгарт, Германия, 2003 [на немецком языке].

28. Schänzlin, J., & Kuhlmann, U., «Time

Dependent Behavior of Timber-Concrete-Compo-

site Structures», Proceedings of the World Con-

ference of Timber Engineering, Lahti , Finland, 2004.

29. Саид, Э., Джуллиен, Дж., И Чеккотти, А., «Долгосрочное моделирование

деревянно-бетонных композитных конструкций —

конструкций в переменных климатических условиях», в Proceedings of

World Conference of Timber Engineering, Lahti,

Finland, 2004.

30. Fragiacomo, M., & Ceccotti, A., «Упрощенный подход

для долгосрочной оценки древесины —

Бетонные композитные балки», в Proceedings of

the World Conference of Timber Engineering, Lahti ,

Finland, 2004.

31. Simmons, HL, & Olin, H., Construction

Principles, Materials, and Methods, John Wiley &

Sons, New York, New York, 2001.

32. Министерство сельского хозяйства США, Wood

Handbook.Дерево как инженерный материал. Общий

Технический отчет 113, Министерство сельского хозяйства США —

ture, Лесная служба, Лаборатория лесных продуктов,

Мэдисон, Висконсин, 1999.

33. Американская ассоциация лесной и бумажной промышленности, Inc. ,

Расчет допустимого напряжения ( ASD) Руководство по проектированию деревянных конструкций

, AF&PA, Вашингтон, округ Колумбия, 2001.

34. Американский институт бетона, ACI 318-02 Build-

Требования Кодекса стандартов для конструкционного бетона, ACI,

Комитет

318, Фармингтон-Хиллз , Мичиган, 2002.

35. Deutsches Institut für Bautechnik, Allgemeine

Bauaufsichtliche Zulassung Z-9.1-557, DIBT,

Berlin, Germany, 2004.

36. Steinberg, E., Selle, R., & Faust, T ., «Соединители

для деревянных и легких бетонных композитных конструкций

», Журнал структурной инженерии, ASCE,

Vol. 129, No. 11, 2003.

37. Нильсон, А., Дарвин, Д., и Долан, К., Проектирование бетонных конструкций

, 13-е издание, МакГроу-Хилл,

Нью-Йорк, Нью-Йорк, 2004 г.

ГРАЖДАНСКАЯ ИНЖЕНЕРНАЯ ПРАКТИКА ВЕСНА / ЛЕТО 2006 17

В центре внимания исследований: Древесно-бетонные композитные системы — Строительство и строительные технологии

Описание

Древесно-бетонные композиты — это системы полов и настилов, которые состоят из бетонной плиты, неразрывно соединенной с деревянными балками, или ламинированной деревянной плиты внизу с помощью соединителя, работающего на сдвиг. Использование соединителя, работающего на сдвиг, может значительно улучшить прочность и жесткость настила (примерно в 2 и 4 раза соответственно) по сравнению с несвязанной конструкцией, что приводит к высокоэффективному использованию материалов.Звуковые и вибрационные характеристики, а также огнестойкость также улучшены по сравнению с деревянными полами. Добавленная бетонная плита также часто может придать зданию дополнительную боковую жесткость. Эта система хорошо подходит как для реставрации, так и для нового строительства.

Основным преимуществом целостного соединения бетона с деревом является композитное действие. Дерево и бетон действуют в унисон и, таким образом, достигают общей жесткости и прочности, которые превосходят характеристики любого из компонентов, действующих по отдельности.В результате действия композита бетонная плита испытывает преимущественно сжимающие напряжения, а древесина — преимущественно растягивающие, что позволяет наилучшим образом использовать структурные характеристики каждого материала. Конечным результатом является исключительная прочность и жесткость, а также меньший вес по сравнению с аналогичной цельнобетонной секцией.

Современное использование WCC широко распространено по всей Европе. Некоторые компании предлагают металлические соединители, специально предназначенные для соединения бетонных плит с деревянными балками для достижения композитного действия.Среди них вклеенный растянутый металл, диагонально вставленные винты, армированные арматурой стальные или бетонные ключи и многие другие. Примеры недавних проектов в Европе можно найти здесь: TICOMTEC

Экономические преимущества этой системы заключаются в экономии трудозатрат за счет использования древесины в качестве несъемной опалубки, использования меньшего количества материала для фундамента в результате более низких собственных нагрузок на перекрытие (древесина легче бетона или стали), а также в случае реставрации , сочетающие в себе структурные функции (улучшенная система пола и добавленная жесткая диафрагма), а также более быстрое время оборачиваемости по сравнению с заменой пола.

BCT изучил множество различных аспектов древесно-бетонных композитных систем. Мы проверили прочность на сдвиг и жесткость различных крепежных деталей на сдвиг, а также общие характеристики древесно-бетонной плиты как для использования в помещении, так и на открытом воздухе. Мы также накопили опыт анализа и проектирования этих систем. См. Список публикаций ниже для получения дополнительной информации.

Эта технология была использована при строительстве здания Olver Design Building в Университете Массачусетса Амхерст, где на площади около 50 000 квадратных футов используется система BCT, испытанная и опубликованная в прошлом.См. Верхнее изображение на этой странице для изображения этой установки.

Документы

  • CLOUSTON, P .; SCHREYER, A. 2012. « Экспериментальная оценка соединительных систем для систем полов из древесно-бетонных композитов при ремонте зданий завода ». Международный журнал искусственной среды, Vol. 2
  • CLOUSTON, P . ; SCHREYER, A. 2011. Анкерные пластины для использования в качестве соединителей, работающих на сдвиг, в композитных системах из клееного бруса и бетона. Proceedings, 2011 ASCE SEI Structures Congress, Лас-Вегас, Невада, США
  • КЛУСТОН, П.; SCHREYER, A. 2008. Разработка и использование древесно-бетонных композитов . Практическое издание ASCE по структурному проектированию и строительству., 13 (4), стр. 167-175
  • CLOUSTON, P .; SCHREYER, A. 2006. Древесно-бетонные композиты: конструктивно эффективный материал . Гражданское строительство. Секция Бостонского общества инженеров-строителей (BSCE) / Американское общество инженеров-строителей (ASCE). Весна / Лето 2006
  • CLOUSTON, P .; BATHON, L .; SCHREYER, A. 2005. Характеристики сдвига и изгиба новой древесно-бетонной композитной системы .Журнал ASCE по проектированию конструкций. 131 (9), с. 1404-1412
  • CLOUSTON, P .; CIVJAN, S; BATHON, L. 2004. Экспериментальное поведение сплошного металлического соединителя для древесно-бетонной композитной системы . Журнал «Лесные товары». 54 (6) с. 76-84
  • Другие публикации…

Привлеченный факультет

Загрузки

Engineered Wood — Новый бетон на блоке?

Engineered Wood — Новый бетон на блоке?

Выпуск: декабрь 2016 г. | Имущество | Скачать PDF | английский | Deutsch Автор: Лео Ронкен, старший андеррайтер-консультант по вопросам собственности / несчастных случаев, Кельн

Все чаще на конференциях и в СМИ мы слышим о возведении деревянных домов и высоток. Благодаря достижениям в области изделий из дерева и их производства, высокие деревянные здания могут иметь такую ​​же, если не лучшую структурную целостность, чем здания, построенные из стали и бетона.

Люди уже говорят о конце стали и бетоне как о преобладающем строительном материале. Древесина считается материалом будущего, поскольку деревянные конструкции можно возводить быстрее при значительно меньших затратах. Они также значительно легче и экологически безопаснее, чем их бетонные аналоги.

Как следствие, по всему миру возводится все больше и больше зданий с использованием инженерных древесных материалов, элементов и / или компонентов. И они становятся выше. Например, 9-18-этажные дома уже построены в Австрии, Австралии и Великобритании. В Швеции и Великобритании есть планы строительства зданий высотой от 40 до 80 этажей, и их количество будет увеличиваться.

В этой статье обсуждаются эти «новые» строительные материалы, а также некоторые важные аспекты андеррайтинга.

Что такое искусственная древесина?

Инженерная древесина (также называемая композитной древесиной, искусственной древесиной или искусственным деревом) включает изделия из дерева, которые производятся путем связывания или фиксации прядей, частиц, волокон, шпона или древесных плит с помощью клея или других методов с целью образования композитных материалов. Эти производственные процессы позволяют преодолеть естественные вариации в древесине, что приводит к созданию композитных панелей, которые неизменно соответствуют критериям структурной, термической, акустической и пожарной безопасности для использования в традиционном строительстве.

Из различных доступных технических продуктов наиболее распространенными являются:

CLT — Клееный брус
Панели

CLT (обычно) состоят из трех-семи слоев досок, уложенных крест-накрест и скрепленных клеем, крепежными деталями или соединяющими их «ласточкин хвост». На прессе можно склеить до 10 слоев. Даже такие низкосортные породы дерева, как ель, способны выдерживать огромные нагрузки. В случае пожара панели CLT спроектированы так, чтобы образовывать почерневший уголь, который сопротивляется дальнейшему возгоранию.В основном они используются для строительных и кровельных каркасов, преимущественно для балок крыши и реже для опор.

Клееный брус — Пиломатериал клееный

Для изготовления клееной древесины меньшие куски дерева склеиваются вместе для создания конструктивных элементов с большей прочностью на растяжение, чем у стали, и лучшим сжатием, чем у бетона. Иногда его используют как прямую замену стальным и бетонным элементам.

LVL — Брус клееный

Для производства LVL слои шпона ламинируются вместе с помощью клея и отверждаются в горячем прессе.Текстура древесины идет параллельно длинному концу панели. Подобно фанере, но намного крупнее, LVL используется в самых разных областях, включая балки, балки, фермы, рамы, элементы крыши, пола и стен, а также компоненты для столярной промышленности (двери, лестницы, окна).

LSL — Доска обрезная

Структурный композит LSL изготавливается из деревянных прядей, смешанных с клеем. Пряди ориентируют параллельно длине балки, а затем сжимают с помощью парового пресса.Изготавливается из дешевых стружек и щепы.

SIPS — Системы структурных изолированных панелей

SIPS состоит из двух деревянных панелей из ориентированно-стружечной плиты (OSB) и внутреннего слоя из пенополистирола (EPS). Применяется для утепления и акустики зданий.

Фанера

Для производства фанеры тонкие слои или «слои» шпона склеиваются между собой, при этом волокна соседних слоев поворачиваются на угол до 90 градусов.

МДФ — ДВП средней плотности
Панели МДФ

могут быть изготовлены путем объединения древесных волокон с воском и связующим на основе смолы; панели формируются путем приложения высокой температуры и давления.

ДСП

Древесно-стружечная плита или древесно-стружечная плита производятся из древесной щепы, стружки лесопилок или опилок, которые смешиваются со связующим на основе смолы, а затем прессуются и экструдируются.

OSB — Ориентированно-стружечная плита

OSB, также известная как древесно-стружечная плита, вафельная плита или древесно-стружечная плита, похожа на древесно-стружечную плиту, но использует механически обработанные древесные стружки, обеспечивающие большую прочность.

Что хорошего в дереве?

В качестве строительного материала инженерная древесина обладает некоторыми впечатляющими характеристиками, которые объясняют ее растущую популярность среди строительной индустрии, архитекторов и политиков.К ним относятся:

  • Деревянные здания значительно легче и обладают такой же или даже лучшей структурной целостностью, чем стальные или бетонные здания.
  • Дерево — это натуральный возобновляемый материал, отвечающий текущим «зеленым» целям в области экономии энергии и сокращения выбросов углекислого газа.
  • Большая прочность и конструктивная гибкость инженерной древесины вдохновляют все более высокие амбиции в архитектурном и структурном дизайне.
  • Wood позволяет производить предварительное изготовление деталей, компонентов и элементов конструкции, что снижает затраты на транспортировку и сборку на строительной площадке.
  • Эффективная огнестойкость может быть достигнута при использовании толстой, тяжелой и поперечно-клееной древесины или путем покрытия древесины слоем гипсокартона.
  • Древесина при горении образует слой угля, защищая внутреннюю поверхность древесины. Это увеличивает время до обрушения здания в случае пожара, давая людям больше времени для побега, а пожарным — больше шансов бороться с пламенем.

Почему страховщики имущества должны проявлять осторожность?

Несмотря на очевидные преимущества, растущее число — и огромные размеры — зданий, построенных из инженерной древесины, вызывает беспокойство у страховщиков.В основном они связаны с естественным поведением древесины при воздействии огня, воды или влаги, но усиливаются законодателями, которые, по-видимому, поддерживают снижение стандартов безопасности в стремлении к более экологичному строительству.

Как показывают недавние потери от пожаров в США в больших деревянных многоквартирных домах и многоквартирных домах, деревянные дома по своей сути представляют собой высокую пожарную нагрузку с тенденцией сгорать дотла, если пожар не будет быстро обнаружен и потушен. 1

Даже если пожар успешно потушен до того, как здание будет повреждено до такой степени, что его нужно будет снести, древесина в какой-то степени могла сгореть.Нет никакой гарантии, что несущая конструкция останется такой же безопасной, как и планировалось в первоначальной конструкции, даже после реставрации. Конечно, можно наносить химические вещества на древесину, чтобы снизить воспламеняемость и горючесть, но они часто не используются из-за опасений, что они могут нанести вред людям.

Зданиям из стали и бетона для обеспечения энергоэффективности необходима дополнительная изоляция, так же и зданиям из конструкционной древесины. Чтобы соответствовать требуемым стандартам энергосбережения, их часто изолируют горючими материалами (такими как полистирол, полиуретан, солома или другие высушенные натуральные волокна и зерна). Пожарные не могут эффективно бороться с огнем, который распространяется внутри деревянных стен, потолков и изоляционного материала; они могут только попытаться предотвратить распространение огня на следующее здание. В результате пострадавшее здание сгорает полностью.

Вода, используемая для тушения пожара, также может оказаться проблематичной, поскольку она проникает в древесину и приводит к дополнительным косвенным убыткам. Как правило, древесные материалы и комплектующие плохо реагируют на влагу и влажность. Опыт страхования деревянных конструкций показывает значительно более высокие потери в зданиях после протечки трубы.Ущерб от воды имеет тенденцию распространяться быстрее и оставаться незамеченным дольше, чем в бетонных конструкциях; это может повлиять на безопасность всей конструкции или даже сделать ее непригодной для проживания из-за обширной гнили и плесени. Косвенные убытки часто означают, что здание не подлежит ремонту и его необходимо сносить.

Из-за облицовки и декора инспектору по пожарной безопасности или страхованию может быть очень сложно определить древесные материалы в зданиях или используемые изоляционные материалы. В некоторых случаях деревянные детали состоят из цельной древесины; однако, если бы кто-то прорезал балку, стало бы очевидно, что это не так.Некоторые конструкции только выглядят так, как будто они сделаны из массивной поперечно-клееной древесины, тогда как на самом деле инженерная древесина использовалась для экономии денег на материалах. Эти факторы затрудняют правильную классификацию деревянных построек.

Наконец, произошедшие убытки уже указывают на то, что с точки зрения ожидаемых убытков, деревянные постройки любой конструкции и размеров имеют более высокую тенденцию к полному ущербу, и поэтому максимальный прогнозируемый убыток дает оценку 100%.

По этим причинам деревянные постройки не следует рассматривать просто как более экологичные и экономичные; также необходимо учитывать их уязвимость и подверженность пожару и потерям влаги.Профилактические меры, такие как спринклерные установки и автоматические системы обнаружения пожара и утечки воды, должны быть установлены для защиты преимуществ деревянных конструкций в сочетании со стандартами безопасности, по крайней мере эквивалентными тем, которые используются в стандартных строительных конструкциях.

Сводка

В мировой тенденции строительства зданий, отвечающих экологическим требованиям, древесина имеет ряд явных преимуществ перед традиционными строительными материалами, такими как сталь и бетон.Достижения в области инженерных древесных материалов и компонентов открывают возможности для строительства все более крупных зданий — тенденция, наблюдаемая во всем мире.

Это создает проблемы не только для пожарных служб, но и для страховых компаний, которым поручено оценивать такие здания в соответствии с их внутренним воздействием. Некоторые из этих последствий можно и нужно свести к минимуму с помощью мер предосторожности, но важно, чтобы страховщики имели полное представление о связанных с этим рисках.

Если вы заинтересованы в углублении своего понимания, мы будем рады поделиться с вами своими знаниями по этой теме. Не стесняйтесь обращаться к нам.

Скачать PDF-версию для дальнейшего чтения и примечания

Почему бетон лучше дерева как лучшее здание…

Опубликовано 20 июня 2019 г.

От высотных зданий до загородных домов бетон — строительный материал номер один, который выбирают архитекторы и дизайнеры во всем мире.

Хотя древесина является близким заменителем, бетон имеет множество преимуществ, которые делают его лучшим вариантом для большинства строительных проектов.

Вот несколько причин, по которым бетон превосходит дерево в качестве строительного материала.

Высокая прочность

Одно из главных качеств бетона — его податливость и высокая прочность. Бетон твердый в сухом состоянии и эластичный во влажном состоянии; достаточно, чтобы придать ему любую форму. Это придает ему стабильность размеров, необходимую как для наружных конструкций, так и для установки внутри помещений, и дает возможность для творческого самовыражения.

Бетон со временем становится прочнее, укрепляя конструкцию. Для сравнения, древесина менее плотная и, следовательно, менее прочная.

Еще одно преимущество бетона заключается в том, что его можно довести до любой желаемой прочности и отлить на месте, что делает его экономичным выбором.

Кроме того, он может противостоять ветру до 250 миль в час. Бетонные дома также имеют более глубокий фундамент, что делает их пригодными для зон, уязвимых для торнадо и ураганов.

прочный

Хотя древесина является более дешевой альтернативой бетону, она быстрее стареет и требует более высоких затрат на обслуживание и ремонт. Следовательно, хотя древесина быстро портится, особенно если за ней не ухаживать регулярно, срок службы бетона в два-три раза больше, чем у большинства других строительных материалов.

Кроме того, термиты прекрасно себя чувствуют в деревянных конструкциях и деревянных каркасных домах, а древесина, как правило, страдает от эпидемий и проблем с влажностью.Как органическое соединение, древесина также привлекает такие микроорганизмы, как плесень и грибок, что оказывает неблагоприятное воздействие на внутреннюю среду в замкнутых пространствах. Бетон, с другой стороны, устойчив к образованию термитов и плесени, что со временем снижает его деградацию.

Деревянные конструкции также не устойчивы к повреждениям от воды; даже малейший ливень может привести к утечкам из небольших отверстий. Бетон, напротив, более устойчив к влаге и впитывает воду, что приводит к меньшему повреждению всей конструкции.Точно так же бетон огнестойкий, в отличие от дерева, которое усиливает пламя.

В целом стойкие свойства бетона приводят к снижению затрат на обслуживание в течение всего срока службы конструкции.

Звукоизоляция

Деревянные конструкции имеют плохую репутацию шумных, поскольку они не изолируют шум так же хорошо, как бетон из-за разницы в плотности.

Определенные трещины или протечки в конструкции создают проходы для прохождения шума, что доставляет неудобства тем, кто живет на оживленной улице.

Кроме того, с изменением климата древесина также сжимается и расширяется, что может привести к сужению или расширению дверей и шкафов в их рамах. С другой стороны, бетон предлагает плотное, воздухонепроницаемое и звукоизоляционное решение всех этих проблем.

Энергоэффективность

Бетонные дома менее подвержены утечкам, чем деревянные каркасы. Деревянные стены снабжены различными компонентами, такими как обшивка и изоляция, которые могут образовывать трещины и пропускать воздух.

Молекулярная структура

Concrete позволяет создавать воздухонепроницаемую и непрерывную композицию с меньшими шансами на прохождение воздуха через нее. Это предотвращает проникновение тепла в конструкции, сохраняя при этом прохладный воздух внутри.

Современные бетонные дома также имеют более плотную изоляцию и изоляцию, начиная от войлока с фольгой и заканчивая панелями из полистирола.

Короче говоря, в бетонных зданиях обычно меньше холодных или горячих зон, а его компактная конструкция замедляет прохождение тепла через стены.Таким образом, бетон является идеальным выбором для энергоэффективных конструкций и обеспечивает экономичные счета за отопление и охлаждение в течение всего года.

Рентабельность

Бетон можно производить партиями в соответствии с потребностями проекта, что приводит к меньшим потерям. Помимо своей рентабельности в долгосрочной перспективе, бетон предлагает существенную разницу в стоимости строительства и страхования — в зависимости от типа жилья, в котором он используется.

Многие исследования показали, что бетон подходит для строительства многоквартирных домов.

Некоторые из его преимуществ включают:

Экономия на страховых расходах

Одно из качеств бетона — негорючесть; это снижает риск возникновения пожара, последствий применения методов локализации пожара и проблем, связанных с возгоранием.

Поскольку бетон является огнестойким материалом, расходы на страхование домов, построенных из бетона, ниже по сравнению с домами, построенными из дерева.

Фактически, исследование, проведенное в нескольких городах США, таких как Лос-Анджелес, Орландо, Даллас, Таусон и Эджуотер, штат Нью-Джерси, показало, что владельцы могут сэкономить на страховых расходах, если выберут бетон.

В исследовании говорится, что экономия составляет от 14% до 65% на коммерческой недвижимости и от 22% до 72% на страховании строительного риска в отношении бетона. Ожидается, что в следующие годы эта разница будет постепенно увеличиваться.

Более низкие начальные затраты на строительство

Качествами, которые делают бетон хорошим выбором для строительных проектов, являются его долговечность и прочность.

Бетон — это экономичный выбор для строительства секционных или многоквартирных домов, таких как кондоминиумы, квартиры и студенческие общежития.

Согласно исследованию Вальтера Г. М. Шнайдера III, строительные проекты с использованием дерева обходятся дороже, чем бетон. Исследование было сосредоточено в основном на трех городах Даллас, Эджуотер и Тоусон — и изучались шесть различных строительных материалов.

Результаты показали, что первоначальные затраты, связанные с бетонными строительными материалами, были не только ниже, чем на материалы на основе древесины, но и на строительство легких стальных конструкций.

Было обнаружено, что другие методы на основе бетона на 20% больше затрат, связанных с традиционным деревянным каркасом — это обычно может быть покрыто за счет непредвиденных расходов на непредвиденные расходы, что делает бетон более эффективным выбором.

Бетонные дома построены на долгий срок, что делает их выгодным вложением средств для современных домовладельцев.

Полученные в результате конструкции не только не требуют особого ухода, но и увеличиваются в цене по сравнению с каждым потраченным долларом.

Если вам нужна дополнительная информация о различных типах бетона, пригодности для строительства и экономической эффективности, обращайтесь к SpecifyConcrete прямо сейчас.

Влияние предварительной обработки и добавок на улучшение древесно-цементного композита: обзор :: BioResources

Брахмия, Ф.З., Хорват П. Г. и Альпар Т. Л. (2020). « Влияние предварительной обработки и добавок на улучшение цементного древесного композита: обзор BioRes. 15 (3), 7288-7308.
Abstract

Цементно-древесный композит (CWC) — популярный строительный материал. Легкие или панельные здания из дерева имеют растущий рынок в Центральной Европе. Требования и правила как на глобальном, так и на национальном уровне вызывают постоянное развитие. В этой статье обобщены достижения в области улучшения гигроскопических и механических свойств и сокращения времени производства CWC за счет предварительной обработки и добавок.Кроме того, обсуждаются новые перспективы улучшения свойств огнестойкости за счет предварительной обработки антипиренами. CWC без предварительной обработки относится к категории огнестойкости B-s1, d0. Использование антипиренов может повысить его до категории A1, но антипирены не должны влиять на основные свойства CWC. Можно использовать ряд потенциальных антипиренов для древесины, например соединения фосфора, бора и магния.


Скачать PDF
Полная статья

Влияние предварительной обработки и добавок на улучшение цементного древесного композитного материала: обзор

Фатима З.Брахмия, * Петер Дьёрдь Хорват и Тибор Л. Альпар

Цементно-древесный композит (CWC) — популярный строительный материал. Легкие или панельные здания из дерева имеют растущий рынок в Центральной Европе. Требования и правила как на глобальном, так и на национальном уровне вызывают постоянное развитие. В этой статье обобщены достижения в области улучшения гигроскопических и механических свойств и сокращения времени производства CWC за счет предварительной обработки и добавок.Кроме того, обсуждаются новые перспективы улучшения свойств огнестойкости за счет предварительной обработки антипиренами. CWC без предварительной обработки относится к категории огнестойкости B-s1, d0. Использование антипиренов может повысить его до категории A 1 , но антипирены не должны влиять на основные свойства CWC. Можно использовать ряд потенциальных антипиренов для древесины, например соединения фосфора, бора и магния.

Ключевые слова: цемент; Древесина; Отвердители; Добавки; Уход; Антипирены; Ингибиторы; Механические свойства

Контактная информация: Шопронский университет, инженерный факультет Симони Кароли, факультет наук о дереве и прикладного искусства, Институт изделий из древесины и технологий, H-9400 Sopron, Bajcsy-Zs. Евросоюз. 4.Венгрия; * Автор, ответственный за переписку : [email protected]

ВВЕДЕНИЕ

За прошедшие годы многие аспекты строительства зданий улучшились, от дизайна до строительных материалов. Есть два широко известных вида строительства: деревянное и бетонное. Для деревянного строительства дома светлые и теплые зимой. Строительный материал обладает хорошей устойчивостью к растягивающим усилиям, но его сопротивление огню невелико (Deplazes 2005).Бетонные здания имеют сложную конструкцию и часто бывают высокими (Косматка, и др., , 2008). Их огнестойкость превосходна, но обратное верно для прочности на разрыв, которая считается очень низкой и в большинстве случаев ею пренебрегают. Таким образом, стальная арматура используется в бетонных конструкциях для придания прочной прочности на изгиб и растяжение, а также для защиты зданий от сейсмической активности (Zhang and Sun 2018). По прочности на сжатие бетон превосходен из-за содержащихся в нем заполнителей (Kosmatka et al. 2008). Проблема с бетоном заключается в том, что для достижения максимальной прочности требуется 28 дней, а вода вызывает коррозию арматурной стали (Zhang et al. 2017; Marcos-Meson et al. 2018), делая здания со временем слабыми. Кроме того, в бетоне часто возникают трещины (Hillerborg et al. 1976).

Текущие исследования были сосредоточены на новом материале: цементно-древесном композите (Frybort et al. 2008). Этот продукт имеет преимущества как из бетона, так и из дерева.Его огнестойкость лучше, чем у дерева. Он имеет лучшую прочность на растяжение и изгиб, чем бетон, а также легче (Deplazes 2005; Kosmatka и др. . 2008). В композитах цемент-дерево цемент армирован древесными волокнами, частицами, хлопьями и древесной шерстью различных форм и размеров (Ferraz et al. 2012). Цементно-древесным композитам требуется 24 часа для отверждения и достижения максимальной прочности. Поскольку он легче бетона, этот тип материала удобен в использовании, что позволяет сэкономить время и деньги. Эти композиты обычно используются в качестве изоляционного или строительного материала (Quiroga et al. 2016). Для строительства в качестве панелей используется композит цемент-дерево, а в некоторых недавних исследованиях композиты цемент-дерево использовались в основных конструктивных элементах зданий, таких как балки (Bejó and Takáts 2005; Frybort et al. 2008). Из-за прочностных свойств CWC он обычно используется для внутренних и внешних применений, а также для определения акустических свойств (, например, ., звуковые барьеры на шоссе) (Na et al. 2014). Гюндуз и др. (2018) заявил, что цементно-стружечные плиты с композитной формой являются эффективным применением в качестве акустических барьеров для наружного шума.

Самыми известными изделиями на цементной основе являются цементно-волокнистые плиты, цементно-стружечные плиты (CPB), древесноволокнистые цементные плиты (WWCB) и строительные блоки (Vaickellionis et al. 2006). В качестве теплоизоляции используются плиты низкой плотности (Frybort et al. 2008). Наиболее важным аспектом производства изделий из цемента и дерева является соотношение используемых материалов, которое представляет собой соотношение дерево / цемент и цемент / вода (Phillips and Hse 1987). Совместимость древесины и цемента важна, потому что древесина может содержать соединения, влияющие на отверждение цемента. Добавки отвердителя используются для решения этой проблемы и ускорения отверждения цемента.

В большинстве случаев используется портландцемент. Не все породы дерева демонстрируют хорошее сцепление с цементом, потому что каждая порода имеет разную структуру и химический состав.Хотя вид древесины важен, место произрастания и возраст могут иметь значение (Wei et al. . 2000; Frybort et al. 2008; Alpár et al . 2011). Вот почему на протяжении многих лет было проведено множество исследований по этой теме с использованием различных пород древесины, видов цемента и отверждающих добавок для производства различных видов композитов цемент-дерево с улучшениями для многих различных целей.

Целью данной статьи является обобщение достижений исследований в области улучшения гигроскопических (таких как набухание по толщине и водопоглощение), механических свойств (таких как напряжение изгиба, растягивающее напряжение, прочность на сжатие, модуль упругости и внутреннее сцепление) и сокращение времени производства CWC за счет предварительной обработки и добавок.Кроме того, открываются новые перспективы в отношении повышения его свойств огнестойкости за счет использования предварительной обработки антипиренами.

КОМПОЗИТЫ ДЕРЕВЯННОГО ЦЕМЕНТА

Древесно-цементные композиты представляют собой одну категорию продуктов на минеральной связке. Материалы на неорганической основе впервые появились в начале 1900-х годов в виде древесно-стружечных плит, склеенных гипсом. В 1910 году была произведена древесная плита на магнетитовой связке с приблизительной плотностью 400 кг / м 3 , и она была разработана в Австрии в 1914 году. Такие плиты низкой плотности обычно используются в качестве изоляционных панелей. Цементные древесные композиты появились в 1920 году при производстве древесноволокнистых цементных плит (WWCB) плотностью 400 кг / м 3 . В 1930 году за этим последовала разработка цементных плит из древесной стружки плотностью 600 кг / м 3 , но в тот год не было сильного спроса на древесно-цементные панели для промышленного применения. В 1960 году были изготовлены грубые древесно-цементные плиты с диапазоном плотности от 500 до 700 кг / м 3 , но в 1970 году были разработаны цементно-стружечные плиты (ЦПДП) с очень высокой плотностью от 1250 до 1400 кг / м 3 .Чтобы заменить асбестоцементную плиту в конструкциях, CPBP широко использовался в Европе для изготовления фасадов, полов, огнестойкой и влагостойкой мебели (Stokke et al. 2013). Между 60-ми и 70-ми годами большинство исследователей сосредоточили свое внимание на влиянии соотношения цемент / древесина на свойства WCP; Результаты такой работы сильно различались из-за используемой геометрии частиц, обработок, пород древесины, плотности панелей и многих других факторов (Moslemi and Pfister 1986). В 1990 году цементные древесноволокнистые плиты получили дальнейшее развитие, и их плотность увеличилась до 900 кг / м 3 .С начала 21 века в 2000 г. производились древесно-стружечные цементные плиты (WSCB) плотностью от 1000 до 1100 кг / м 3 (Stokke et al. 2013).

Форма используемой древесины, , т.е. волокон, частиц, рубленых нитей, хлопьев или древесной ваты, влияет на механические свойства и использование изделий из цементно-древесного композитного материала (Mohammed et al .2016; Hannant et al. al .2018). Существует несколько различных типов древесно-цементных композитов, как показано на рис.1.

Рис. 1. Принципиальная схема различных типов цементно-древесных композитов (CWC)

Цементное волокно и древесно-стружечная плита (CPB)

Цементно-волокнистая древесина и цементно-стружечная плита обычно производятся из волокон и частиц древесины различных размеров и форм (Медведь и Ресник 2003). Эти виды плит обладают хорошими механическими свойствами и большим весом по сравнению с другими композитами из цемента и дерева, поскольку имеют более высокую плотность.В последние годы было проведено обширное исследование возможности производства древесностружечных плит из древесных отходов. В нескольких исследованиях CO 2 использовался в качестве отвердителя для производства цементно-стружечных плит с использованием частиц строительных древесных отходов (Soroushian et al. 2013; Wang et al. 2017b). Ашори и др. . (2012a) производили плиты из древесных отходов от шпал. Механические и физические характеристики картона улучшаются при использовании CaCl 2 или хлорида кальция.Wang et al. (2017b) использовал строительные древесные отходы для производства водостойких магнезиально-фосфатных цементных плит с использованием красного шлама и глинозема. Результаты были удовлетворительными и показали, что красный шлам и древесные отходы являются возможными материалами для производства ДСП. Исследовано производство цементно-стружечных плит из переработанных древесных отходов, армированных фосфатом магния. Улучшились механические характеристики, термические свойства и водостойкость плиты (Wang et al. 2018).

Древесноволокнистые цементные плиты (WWCB)

Древесно-цементные композиты производятся из портландцемента и древесной ваты (Кохестани и др. 2016). Производство древесноволокнистых плит требует определенных размеров частиц. Длина варьируется от 25 до 500 мм, ширина от 0,5 до 5 мм и толщина от 0,03 до 0,64 мм (Malloney 1989) при плотности от 400 до 900 кг / м 3 . Этот продукт обладает впечатляющими механическими и химическими свойствами; однако трудно понять, почему его механические свойства настолько превосходны (Koohestani et al. 2016). Обычно для утепления используются древесноволокнистые цементные плиты. Alpár et al. № (2011) показал повышенное сцепление портландцемента с деревом, что улучшило качество продукта. Добавки были использованы для изменения поверхности древесного волокна.

Строительные блоки

Эти типы продуктов хорошо подходят для использования в качестве строительных материалов. Строительные блоки были изготовлены с использованием цемента в качестве клея для древесных частиц. В Вашингтоне производились блоки толщиной 203 мм: 305 на 610 мм или 305 на 1280 мм; однако толщина и высота могут отличаться.Самые большие блоки весили 45,5 кг (Мэллони, 1989). Строительные блоки обладают хорошей огнестойкостью и прекрасными изоляционными характеристиками. По плотности они похожи на мягкое дерево, поэтому их легко обрабатывать гвоздями и шлифовать. Преимущество строительных блоков в том, что их легко производить (Malloney 1989).

ТЕХНОЛОГИЯ СОЗДАНИЯ ЦЕМЕНТНОЙ ДРЕВЕСНОЙ СМЕСИ

Для древесно-цементных композитов чаще всего используется портландцемент. Портландцемент — это комбинация материалов, нагретых в печи при определенной температуре, а затем измельченных до цементного порошка (Deplazes 2005; Kosmatka et al . 2008 г.). Портландцемент состоит на 90% из клинкера и небольшого количества гипса или дигидрата сульфата кальция (CaSO 4 .2H 2 O), оксида магния (магнезия) и других минералов, которые улучшают характеристики цемента и способствуют процессу гидратации. Состав каждого из пяти типов цемента разный (Kosmatka et al .2008; Mohammed and Safiullah 2018).

При гидратации цемента он вступает в реакцию с водой, придавая цементу прочность и делая его твердым материалом (Bullard et al. 2011). Обычно совместимость цемента и дерева определяется степенью схватывания цемента после его смешивания с деревом и водой. Наличие древесины влияет на химический процесс твердения цемента. Взаимодействие между цементом и деревом снижает физические свойства цементных композитов. Эффект ингибитора обычно измеряется по уменьшению количества тепла, выделяемого при отверждении цемента. Отношение количества тепла, выделяемого из смеси цемент-древесина, а также тепла, выделяемого на границах раздела цементно-древесной смеси, определяется как коэффициент C A и используется вместе с ( T max ), или период времени, необходимый для достижения максимальной температуры. На типичном температурном графике цементно-древесной смеси можно выделить три части. Он начинается с первоначального повышения температуры, за которым следует период покоя. На этом этапе температура практически постоянная, нестационарная или почти не снижается. Последний этап — твердение цемента, во время которого резко повышается температура. Совместимость цемента и дерева делится на три категории: совместимая, если C A > 68%, умеренно совместимая, если 68%> C A > 28%, или несовместимая, если C A > 28%.Однако причины несовместимости древесины и цемента неясны (Хорхе и др. 2004)

Во время гидратации все минералы гидратируются одновременно, что усложняет процесс (Liang et al .2014). Более того, это основная причина того, что связка древесины и цемента получается очень прочной. Состав и тип экстрактивных веществ древесины действуют как ингибиторы отверждения цемента. Древесина содержит сахар, целлюлозу, гемицеллюлозу и лигнин (Frybort et al. 2008; Karade 2010).Эти вещества вызывают проблемы во время отверждения цемента, поскольку они растворяются с цементными смесями, вызывая изменения, которые предотвращают процесс гидратации и удлиняют его (Хорхе и др. 2004). Кочова и др. (2017) изучали влияние сахаридов на отверждение цемента. К цементной смеси добавляли различные органические соединения, включая фруктозу, глюкозу, лигнин, сахарозу и целлюлозу, присутствующие в волокнах лигноцеллюлозы. Также было добавлено обработанное выщелачиванием волокно (жмых, кокосовое волокно, конопля, масличная пальма, водяной гиацинт и древесина ели).Результаты показали, что время схватывания было увеличено, а отверждение цемента заняло 2 дня из-за глюкозы, маннозы и ксилозы в волокне, обработанном выщелачиванием.

ВЛИЯНИЕ ПОРОДОВ ДРЕВЕСИНЫ

Выбор правильной породы древесины зависит от структуры древесины и от вида производимых древесно-цементных композитов. Кроме того, древесина одной породы может иметь разные характеристики в зависимости от места произрастания, возраста и сезона рубки дерева. Содержание сахаров и экстрактивных веществ различается в зависимости от породы дерева (Fan et al. 2012). Таким образом, важно выбрать правильную породу древесины, соотношение древесина / цемент и соотношение цемента к воде, потому что количество сахаров и экстрактивных веществ влияет на процесс гидратации цемента (Phillips and Hse 1987). Наиболее распространенными породами древесины, используемыми в древесно-цементных композитах, являются тополь или Populus (Ashori et al. 2011; Alpár et al. 2012; Quiroga et al. 2016) и ель. Ель — одна из лучших пород для древесно-цементных композитов, поскольку она содержит небольшое количество экстрактивных веществ (Malloney 1989).

Вентилятор и др. (2012) создал композиты на цементной основе из 15 видов тропической древесины, чтобы исследовать их совместимость с портландцементом. Гемицеллюлозы и низкомолекулярные углеводы работали как ингибиторы гидратации цемента в цементно-древесной смеси. С увеличением доли древесины совместимость между цементом и древесиной ухудшалась с разной скоростью в зависимости от породы древесины. Породы в порядке убывания совместимости древесины и цемента могут быть перечислены как сапеле 97%, нкананг 85%, мвингуи 77%, падук 68%, эйонг 64%, тали 50%, ироко 22%, бетэ 21%, маоби 17%, и Дусси 10%.С увеличением содержания растворимости тропической древесины коэффициент совместимости увеличивался. Gastro et al. (2019) исследовали совместимость цемента со следующими породами древесины: Eshweilera coriaceae (Ec) , Swartzia reanva poepp (Sr) , Manilkara amazonica (Ma) и Pouteria guianesisaubl (Pg) . Эти породы древесины подходят для производства CWC, поскольку они не оказывают ингибирующего действия на гидратацию цемента, и все породы древесины имеют хороший коэффициент совместимости C A = 85% для Ec, 74.4% для Sr, 85% для Ma и 76,4% для Pg. Образцы CWC ​​достигли максимальных механических и физических свойств через 28 дней. Antiwi-Boasiako et al. (2018) исследовали пригодность различных тропических пород древесины для CWC. Triplochiton sclerosylon , Entandrophragma cylindricuim и Klainedosca gabonensis опилки использовались при производстве CWC. Основываясь на изучении химических компонентов, их состава и физико-механических свойств, Triplochiton sclerosylon имел самые низкие экстрактивные вещества — 6.12% от общего количества экстрактивных веществ, 29,9% лигнина и 56,4% холоцеллюлозы. Он достиг наивысшего MOR среди используемых пород древесины — 696 Н / м 2 , имел показатель поглощения влаги 8,8% и выдающиеся физико-механические свойства. Ван и Ю (2012) исследовали совместимость двух быстрорастущих видов, китайской пихты и тополя, с портландцементом. Результаты теста на гидратацию показали, что пихта китайская лучше сочетается с цементом, чем тополь с C A = 95%, в то время как тополь имеет C A = 24. 3%.

Аль-Мефаррей (2009) проверил совместимость пяти саудовских древесных пород: леббека, пуговичного дерева, советского дерева, леукины, медресе трон и сосны обыкновенной с цементом. Было обнаружено, что коэффициент совместимости C A отличался от одной породы дерева к другой. Результаты были следующими: 17,7% для леббека, 52,0% для древесины пуговиц, 23,0% для дерева совета, 19,0% для leucaena, 19,9% для трон медресе и 59,0% для сосны обыкновенной.

Пападопулос (2009) исследовал ДСП, изготовленный из древесины граба.Испытания на гидратацию показали, что смесь цемента и древесины граба имела умеренное ингибирование с 39,15% C A , и были применены два разных соотношения древесного цемента, 1: 3 и 1: 4. Исследование свойств плиты подтвердило, что, за исключением MOR, все свойства улучшились после увеличения соотношения цемента к древесине. После воздействия различных грибков на CBPB плиты не пострадали.

Различия встречаются даже с одной и той же породой древесины. Кочова и др. (2020) изучали деградацию древесины и ее влияние на совместимость цемента с древесиной.Были использованы две практически идентичные партии волокон еловой древесной шерсти. Деревья были посажены, выращены и собраны при одинаковых обстоятельствах. Было проведено сравнение двух пород древесины, и результаты показали, что их совместимость, механическая прочность и анатомическая структура различаются. Фактор C A для образца ели A составил 85%, а для образца B — 75%. Прочность на изгиб для A составляла 4,5 МПа, а для B — 1,5 МПа. Процент экстрактивных веществ также отличался, поскольку один из видов содержал больше экстрактивных веществ, чем другой, что приводило к его несовместимости с цементом и влияло на механические свойства.Кроме того, хранение древесины повлияло на совместимость цементной древесины, поскольку древесина может подвергаться воздействию синевы или других грибков, что приводит к увеличению количества экстрактивных веществ древесины. Pasca et al. (2010) изучали совместимость горного соснового жука и убитой ложной сосны с портландцементом. В эксперименте был задействован ряд факторов, в том числе: время смерти дерева, синяя окраска заболони, белая гниль и бурая гниль. Были измерены скорость нагрева, общее тепловыделение и гидратация цемента, и результаты не показали разницы между свежей и мертвой горной сосной и сосной, убитой жуками.Коэффициент совместимости составлял от 78,9% до 81,8%. Единственная несовместимость произошла в случае образцов с белой гнилью, для которых C A составляло 48,8%; во всех остальных случаях были обнаружены отличные физико-химические свойства. Смесь цемента и заболони, окрашенной в синий цвет, достигла наивысшей совместимости.

На основании приведенных результатов, касающихся совместимости древесных пород и цемента, можно сделать вывод, что порода древесины оказывает огромное влияние на качество КХО.Породы древесины подразделяются на три категории в соответствии с их C A : подходящие A, например Eshweilera coriaceae , Swartzia reanva poepp, Manilkara amazonica и Pouteria guianesisaubl , sapelengi, ny. , ель, сосна и горная сосна убили лесную сосну. Умеренно подходящие (B) породы дерева включали сосну обыкновенную, падук, эйонг, тали, леббек, трон медресе и граб. Неподходящие породы дерева (C) включали ироко, бете, маоби, дусси, пуговичную древесину, дерево советов, леуцена и тополь.

ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ НА СОВМЕСТИМОСТЬ ЦЕМЕНТА И ДРЕВЕСИНЫ

Поскольку древесные экстрактивные вещества препятствуют отверждению цемента, было проведено несколько исследований, чтобы найти предварительные обработки, которые уменьшают количество ингибиторов в древесине, что приводит к лучшей совместимости между деревом и цементом. В большинстве случаев применяется предварительная обработка холодной и горячей водой.

Было проведено исследование совместимости портландцемента и средней жилки финиковой пальмы ( Phoenix dactylifera L).Древесные частицы были подвергнуты обработке холодной и горячей водой для повышения их совместимости. Результаты показали, что необработанные древесные частицы не подходят для CBPB, но совместимость улучшилась с обработкой. Обработка горячей водой была классифицирована как подходящая, и результаты также показали, что добавление 3% CaCl 2 улучшило совместимость цементной древесины в ограниченных условиях: T max = 54,2 ° C и C A = 75,7% (Насер и Аль-Меффаредж 2011).В 2014 году было проведено исследование совместимости портландцемента с предварительно обработанной древесиной Eucalyptus benthamii . Использовали пять типов предварительной обработки: горячая вода, холодная вода, гидроксид натрия, CaCl 2 и гидроксид кальция. Результаты показали, что эффект ингибирования видов снизился на 3% при использовании CaCl 2 , что было лучшим результатом.

Напротив, прочность на сжатие была увеличена путем смешивания CaCl 2 с карбонизированными частицами через гидроксид кальция (Gastro et al. 2014). Исследование было проведено Quiroga et al. (2016) о влиянии обработки древесины на механические свойства WCC. В качестве материалов использовались портландцемент и Populus euroamericana , в то время как для обработки древесины использовались водная экстракция, разложение щелочным гидролизом и удержание ингибирующих веществ. Щелочной гидролиз был наиболее эффективным методом подавления ингибиторов среди изученных способов лечения. Однако это привело к наибольшему снижению механических свойств WCC.

Ferraz et al. (2012) оценил химическую совместимость портландцемента и кокосового волокна. Холодная вода, горячая вода, гидроксид натрия и CaCl 2 использовались в качестве предварительной обработки. Лигнин и холоцеллюлоза были ингибиторами гидратации цемента, но добавление смеси NaOH и CaCl 2 снижало ингибирование. Jiang et al. (2015) исследовали влияние методов модификации на совместимость волокна и цемента из листьев тополя. Для повышения совместимости листьев использовали пять методов.Совместимость листьев и цемента можно улучшить тремя способами: окунанием волокна листа в воду, опрыскиванием силикатом натрия или эмульсией чистого акрилового полимера. Xie et al. (2016) изучали влияние предварительной обработки рисовой соломы на отверждение цемента. Рисовая солома была предварительно обработана различными способами: необработанная, взорванная паром, один раз отбеленная и дважды отбеленная. Предварительная обработка удаляет аморфную гемицеллюлозу и лигнин. Кроме того, они улучшают кристалличность цемента и повышают термическую стабильность волокна рисовой соломы.

Nasser et al. (2016) исследовали возможность изготовления высококачественных цементно-древесных композитов с использованием древесных отходов. Использовались разные породы древесины, в том числе Acacia salicina , Conocarpus erectus , Ficus altissima , Leucaena glauca , Pithecellobium dulce и Tamarix aphylla . Отходы обрезки древесины обрабатывали горячей и холодной водой и использовали CaCl 2 , Al 2 (SO 4 ) и MgCl 2 для ускорения отверждения цемента и повышения совместимости. Результаты показали, что отходы могут быть введены в производство древесно-цементных композитов в качестве альтернативы древесине, но с применением предварительной обработки и добавления 3% добавок CaCl 2 , Al 2 (SO 4 ) , и MgCl 2 .

Cechin et al. (2018) изучали совместимость бамбука moso и портландцемента. Выбранные породы древесины были подвергнуты различным предварительным обработкам, таким как холодная вода, горячая вода, гидроксид натрия, силикат натрия, силан и хлорид кальция.Результаты показали, что частицы бамбука мозо обладают хорошей совместимостью с цементом, что делает их пригодными для производства CWC. Механические свойства, совместимость и кристалличность произведенных плит были улучшены за счет использованных предварительных обработок.

Gastro et al. (2018) провели исследования корреляции между химическим составом древесины и совместимостью цемента с древесиной. Для экспериментов использовали портландцемент II-Z и восемь различных тропических пород древесины лиственных пород из Амазонии. Не было обнаружено корреляции между полярными и неполярными растворимыми экстрактами и ингибиторами схватывания цемента, за исключением Swartzia recurva с содержанием арабинозы. Кроме того, была обнаружена корреляция между Larix с щелочным раствором и ингибиторами цемента. Лигнин и гемицеллюлоза создают большое количество разложенных полисахаридов, которые вызывают ингибирование цемента. Пять из используемых древесных пород, Eschweilera coriacera, Inga paraensis, Ingalba, Pouteria guianensis и Byrsonima crispa , обладали низким ингибирующим действием.

В таблице 1 представлены коэффициенты совместимости различных пород древесины с различными обычно используемыми предварительными обработками. Фактор C A был увеличен за счет использования предварительных обработок для повышения качества древесины с непригодных до умеренно подходящих или подходящих, но в некоторых случаях, таких как порода древесины доусси, предварительная обработка не влияет на увеличение цементной древесины. совместимость. Предварительная обработка по-разному влияет на древесину каждой породы. В большинстве случаев было обнаружено, что горячая вода и MgCl 2 были отличными препаратами для предварительной обработки, но на финиковую пальму они не оказали никакого воздействия.

Таблица 1. Влияние различных предварительных обработок на коэффициент совместимости C A (%) различных пород древесины

ВЛИЯНИЕ ДОБАВОК И СООТНОШЕНИЯ ДЕРЕВО / ЦЕМЕНТ НА ​​СВОЙСТВА CWC

Поскольку древесно-цементные композиты являются широко используемыми строительными материалами, их свойства очень важны. Много усилий было направлено на улучшение свойств CWC. Соотношение древесина / цемент является одним из основных факторов, влияющих на КХО (Пападопулос, 2009; Табарса и Ашори, 2011; Ашори, и др.). 2012b; Абдельрахман и др. 2015; Boadu et al. 2018). Многие добавки также использовались в качестве ускоряющих агентов во время процесса гидратации (Frybort et al. 2008). Этот подход работает на связке цемента и дерева, что приводит к улучшению свойств CWC. Наиболее часто используемыми добавками были жидкое стекло (Na 2 SiO 2 ), хлорид кальция (CaCl 2 ), силикат алюминия (Al 2 (So 4 ) 3 ) и хлорид магния или MgCl 2 (Alpár et al. 2011). Некоторые прошлые исследовательские работы были сосредоточены на закачке углекислого газа, который также использовался для улучшения склеивания цементной древесины.

Ashori et al. (2012b) провел исследование цементно-стружечных плит, изготовленных из тополиных нитей. Соотношение древесины повлияло на механические и абсорбционные свойства плит. Они стали более прочными и плотными, если изготовлены из 40% нитей тополя, а также достигли наилучшей прочности на изгиб. Механические и водопоглощающие свойства были улучшены за счет добавления 7% хлорида кальция (CaCl 2 ).

Sotannde et al. (2012) исследовал CBPB, изготовленный из африканской древесины Afzelia . Плиты производились с использованием различных добавок, содержания цемента и различных форм древесины, а именно ленточных, с опилками и древесных опилок. Увеличение содержания цемента в древесно-цементной смеси с 1: 2 до 1: 3,5 и добавление химических добавок уменьшило набухание по толщине прим. 60% и водопоглощение прибл. 71%. Плотность увеличилась прибл. 23%, прочность на сжатие была увеличена почти на 60%, а внутреннее соединение плит в среднем на 38%.Только на MOR содержание цемента и добавки не повлияло. Наилучшие результаты были достигнуты при добавлении 2% CaCl 2 . Форма древесных частиц влияла на механические свойства плит. Наилучшие результаты были получены при использовании ленточных опилок с IBS = 0,50 Н / мм 2 , MOR = 11,6 Н / мм 2 и C s = 15,16 Н / мм 2 , в то время как худшие результаты были достигнуты с помощью пластин с IBS = 0,37 Н / мм 2 , MOR = 9. 57 Н / мм 2 и C s = 12,6 Н / мм 2 .

Boadu et al. (2018) исследовали плиту CWC, изготовленную из опилок различных тропических пород древесины с разной плотностью: Triplochiton scleroxylon (низкая плотность), Entandrophragma cylindricum (средняя плотность) и Klainedoxa gabonensis (высокая плотность). Увеличение доли древесины вызывает увеличение механических и физических свойств (MOR, прочность на сдвиг и разбухание по толщине).Плиты из извлеченных опилок показали лучшие механические свойства и устойчивость к набуханию по толщине, чем плиты из обычных опилок. TS (%) снизился по сравнению с контрольными образцами с TS = 1,5 и 2,9 для T. scleroxylon и E. cylindricum соответственно до TS = 0,42 и 0,95 соответственно при использовании горячей воды. Прочность на сдвиг была увеличена с 0,3 и 0 до 1,8 и 1 (Н / мм 2 ) для T. scleroxylon и E. cylindricum , соответственно. MOR был увеличен с 1,8 и 1,1 до 4,1 и 2,4 (Н / мм 2 ) для T. scleroxylon и E. cylindricum , соответственно, с использованием опилок, экстрагированных горячей водой. Плиты CWC, обладающие высокой стабильностью размеров и механическими свойствами, были изготовлены из древесных опилок выбранных пород.

Matoski et al. (2013) изучал влияние различных ускорителей на древесно-цементные панели. WCP изготавливали из древесной пыли различных пород Pinus и портландцемента.Были использованы различные добавки, включая хлорид кальция, хлорид магния, сульфат алюминия и силикат натрия. Результаты показали, что хлоридные добавки смогли улучшить механические свойства изготовленной панели до значений, превышающих требования следующих стандартов (EN 1058 и ASTM D 1037) с CS = 18,1 МПа, прочностью на изгиб (BS) = 4,72 МПа и IBS = 0,54 МПа для CaCl 2 и CS = 18,0 МПа, BS = 4,55 МПа и IBS = 0,57 МПа. Для теста на водопоглощение было обнаружено, что сульфат алюминия показал наилучшие результаты с WA = 1. 52% после 2 часов погружения в воду и 3,97% через 24 часа, создавая водонепроницаемую систему за счет увеличения количества ионов, вступающих в реакцию с трикальцийалюминатом, который является одним из компонентов цемента.

Было исследовано влияние предварительной обработки и соотношения между цементом и древесиной на цементный композит (Abdelrahman et al. 2015). Prosopis chilensis древесина и портландцемент в дополнение к гипсу в качестве частичной замены цемента были использованы для производства цементных композитов.В качестве предварительной обработки использовали холодную воду, гидроксид натрия и хлорид кальция. CWC были изготовлены с различным соотношением древесины и цемента: 2: 1, 3: 1, 4: 1 и 5: 1. Наилучшее соотношение древесины и цемента составляло 3: 1, а добавление 10% гипса в качестве частичной замены цемента улучшает прочность на сжатие с CS 51,6% = 51,3 Н / мм 2 , тогда как для контрольных образцов CS = 24,8 Н / мм 2 . Однако добавление более 20% гипса отрицательно сказалось на прочности на сжатие.

Было проведено исследование гидратационных свойств CBPB, сделанного из цемента и смеси пшеничной соломы и тополя.Добавки MgCl 2 , CaCl 2 и Ca (OH) 2 использовали в различных пропорциях: 3%, 5% и 7% от массы цемента. Было показано, что соотношение соломы и древесины оказывает сильное влияние на физико-механические свойства CBPB. Среди использованных добавок 7% CaCl 2 показал наилучшие результаты в целом для свойств с TS = 13,4%, IBS = 0,66 МПа и MOR = 16,87 МПа, при этом сокращая время схватывания (Назериан и Садегипанах, 2013).Табарса и Ашори (2011) исследовали цементную древесноволокнистую плиту с использованием эвкалипта и тополя с портландцементом. Использовали соотношение древесной шерсти и цемента 40:60 и 60:40, а в качестве обработки использовали CaCl 2 . Добавление 5% CaCl 2 повысило производительность плит. Породы древесины — еще один фактор, определяющий свойства доски. Например, плиты из эвкалипта обладают более высоким водопоглощением и набуханием при усадке. Цементный композит изготавливали из цемента и древесной ваты древесины келампян ( Anthocephalus chinensis ).В качестве добавок использовали 3% формиат кальция, силикат натрия и хлорид магния для ускорения времени схватывания цементного древесного композита. Добавки повысили прочность и механические свойства плит на ранней стадии (Mahzabin et al. 2013). Wulf et al. (2015) исследовал бетон, армированный минерализованными частицами древесины в качестве элементов жесткости с возрастающей плотностью. Были приготовлены смеси портландцемента и частиц сосны обыкновенной и ели. Для минерализации древесины к древесным частицам применялись различные обработки.Древесный наполнитель, минерализованный жидким стеклом (силикатом натрия) и портландцементом, улучшил древесный бетон только при использовании 15% древесных частиц в качестве наполнителя в пересчете на массу. Наблюдалось снижение плотности от 36 до 39%.

ПРОЦЕДУРЫ УСКОРЕНИЯ ОТВЕРЖДЕНИЯ ЦЕМЕНТА

Уменьшение времени отверждения композитов из цементной древесины является предметом серьезных исследований. Makoving (2010) исследовал возможность сушки панелей WCC с помощью микроволн без повреждения панелей или ухудшения механических свойств.Результаты показали возможность сушки досок без ущерба для качества. В последние годы обработка CO 2 широко используется для уменьшения времени отверждения древесно-цементного композита и в то же время улучшения его механических свойств.

Двуокись углерода (CO 2 )

При обычном производстве CBPB зажимается между стальными пластинами и оставляется сохнуть на 24 часа, что является временем, необходимым для того, чтобы стать самонесущим. Однако углекислый газ (CO 2 ) затвердевает CBPB всего за 5 минут, что дает преимущества, включая более низкие энергозатраты и более высокую производительность (Alpár et al. 2003). Qi e t al. (2010) исследовали возможность ускорения твердения древесно-цементной смеси из красной сосны и портландцемента с использованием CO 2 . В первые минуты использования закачки СО 2 началась реакция карбонизации. Через 30 минут примерно 43% содержания оксида кальция в цементе карбонизировалось. Быстрое затвердевание могло быть вызвано взаимодействием силикатов кальция в цементе с CO 2 . С другой стороны, реакции между гидроксидом кальция и CO 2 не наблюдалось.Wang et al. (2017a) использовал отверждение CO 2 и армирование волокном для ускорения отверждения цемента и улучшения физических свойств ДСП из цемента и древесных отходов. Результаты показали, что CO 2 помог гидратации цемента за счет ускорения превращения Ca (OH) 2 в CaCO 3 , что привело к повышению прочности древесностружечных плит. Кроме того, общая площадь пор 12,2 м 2 г -1 была уменьшена до 10. 3 м 2 г -1 и пористостью от 34,8% до 29,7%. Все требования соответствующих международных стандартов были выполнены за счет улучшения механических свойств, стабильности размеров и улавливания загрязняющих веществ. Сорушян и др. (2013) исследовали влияние ускоренного старения на прочность на изгиб; CO 2 помогает увеличить содержание CaCO 3 и уменьшить содержание Ca (OH) 2 , что приводит к повышению прочности на изгиб и жесткости.В результате старения содержание CaCO 3 увеличивается, а содержание Ca (OH) 2 уменьшается, что приводит к улучшению границ раздела волокон с матрицей.

Повышение характеристик древесно-цементного композита за счет CO 2 не всегда эффективно. Используемая порода дерева может иметь важное значение. Taskirawati et al. (2019) оценили характеристики цементно-древесной плиты из портландцемента и двух пород древесины: Acacia mangium (Acacia) и Arthophyllum diversifolium (Lento-lento). Плиты были изготовлены обычным способом производства с использованием CaCl 2 в качестве добавки-ускорителя, а плиты также были изготовлены методом карбонизации с использованием впрыска CO 2 для ускорения твердения и улучшения механических свойств. Результаты показали, что плиты из древесины ленто-ленто имели лучшие характеристики при использовании метода впрыска CO 2 , в то время как Acacia показала лучшие результаты при обычном способе производства, тем самым показывая, что впрыск CO 2 не всегда лучше, чем при обычном способе производства. методы, в зависимости от используемых пород древесины (Taskirawati et al. 2019).

Maail et al. (2013) изучали разрушение цементно-стружечных плит из портландцемента и смеси древесных пород: кипарис японский ( Chamaecyparis obtusa Endl.) И японский кедр ( Cryptomeria japonica D. Don) с CO 2 как ускоритель отверждения. Результаты показали влияние CO 2 на разложение CBPB. CO 2 помог плитам достичь максимальных механических свойств за короткое время за счет ускорения процесса отверждения цемента.CO 2 не только помог ускорить отверждение, но также улучшил механические свойства и стабильность размеров. Однако время обработки CO 2 имело большое влияние на ее эффективность. Процедура рекомендуется непродолжительное время, не более 30 мин. Обработка CO 2 в течение от 60 минут до 10 дней оказала отрицательное влияние на механические свойства плит, поскольку более длительные периоды времени вызывают деградацию CBPB из-за влияния содержания карбоната кальция (Maail et al. 2011). Было проведено исследование цементно-древесных плит из портландцемента и финиковой пальмы с ускорителем отверждения CO 2 . Было обнаружено, что волокна финиковой пальмы несовместимы с цементом; однако после предварительной обработки горячей водой совместимость волокон повысилась до подходящей. Введение CO 2 снизило прочность на изгиб и улучшило качество матрицы и платы (Hassan et al. 2016).

Кроме того, были проведены исследования CBPB, изготовленного из различных видов натуральных волокон, с использованием впрыска CO 2 для повышения начальной совместимости между цементом и волокнами.Закачка CO 2 была успешной в увеличении начальной прочности за счет ускорения отверждения цемента и склеивания цемента и древесины. Эти плиты имели те же механические свойства, что и плиты, изготовленные традиционным способом, и имели более низкое содержание цемента (Marteinsson and Gudmundsson 2018). Исследованы характеристики долговечности композитов из целлюлозного волокна и цемента. После обработки плит CO 2 результаты показали, что капиллярная пористость уменьшилась из-за отверждения CO 2 , а повышение содержания CaCO 3 увеличило совместимость между цементом и волокнами за счет улучшения матрицы на основе цемента. для целлюлозных волокон.Также были увеличены долговечность и устойчивость к атмосферным воздействиям (Soroushian et al. 2012).

ОГНЕСТОЙКОСТЬ КОМПОЗИТА ДЕРЕВЯННОГО ЦЕМЕНТА

Для строительных материалов очень важным фактором является промышленная огнестойкость. Материалы, изготовленные из магниево-цементных изделий, считаются превосходными огнестойкими материалами (Zuo et al. 2018). Как правило, древесно-цементные композиты — это материалы, обладающие хорошей огнестойкостью. Saval et al. (2014) исследовали воспламеняемость CBPB из цемента и отходов Oceanic Posidonia.Поскольку CBPB не распространился пламенем, он не является горючим материалом. Согласно литературным данным, соотношение цемент-древесина влияет на огнестойкость композитов цемент-дерево. Исследование было проведено на переработанных частицах китайской пихты и цементе. Исследование проводилось с помощью теста конической калориметрии. Результаты показали, что соотношение цемента и древесины влияет на огнестойкость CBPB. При увеличении соотношения цемент / древесина от 0,5 до 2 время воспламенения увеличивалось с 26 до 548 с, а скорость потери массы уменьшалась.

Ряд исследований был проведен на CWC для улучшения его усадки и набухания, водопоглощения и механических свойств, а также сокращения времени его изготовления. Однако меньше исследований было направлено на огнестойкость CWC. Не проводилось никаких исследований по предварительной обработке древесины для повышения огнестойкости CWC, как в случае с уменьшением количества ингибиторов древесины. Единственные исследования в этой области касались негорючести материала и влияния соотношения древесины на огнестойкость.Многие химические вещества можно использовать в качестве предварительной обработки для улучшения огнестойкости древесины и, как следствие, повышения огнестойкости древесно-цементного композита. Силикат натрия известен как связующее и антипирен, которое может улучшить такие свойства древесины, как механические свойства, стабильность размеров и огнестойкость (Medina and Schledjewski 2009; Mahzabin et al. 2013).

Антипирены по-разному воздействуют на разные материалы, потому что каждый материал обладает уникальной реакцией на огонь, зависящей от ряда факторов.Например, следует учитывать легкость возгорания материала, скорость горения и распространение пламени по поверхности. Кроме того, скорость, с которой пламя проникает в стену или барьер, скорость, с которой выделяется тепло, а также количество выделяемого дыма и токсичного газа, — все это влияет на огнестойкость материала (Ayrilmis et al. ). 2009 г.). Однако, во-первых, важно понять действие антипиренов, различия между антипиренами и решить, какой из них лучше использовать в зависимости от ситуации.

Огнестойкие или антипирены созданы для снижения температуры материала. Когда происходит возгорание, антипирены вызывают термическое разложение, увеличивая количество полукокса и снижая воспламеняемость (LeVan et al. 1990). Антипирены имеют два вида действия: физическое и химическое.

Для физического воздействия есть много способов отсрочить зажигание. Охлаждение — это один из методов, и есть несколько антипиренов, которые могут снизить температуру материалов.Покрытие — это еще один способ замедлить возгорание, когда антипирены могут образовывать защитный слой, предотвращающий возгорание основного материала. Разбавление — это третий способ, при котором замедлители выделяют воду и углекислый газ во время горения. Каждый антипирен лучше влияет на определенный вид материала, поэтому выбор антипирена зависит от основы и ее уникального набора характеристик.

Антипирены для предварительной обработки

Многие антипирены могут использоваться для предварительной обработки древесины при производстве ХХО, например соединения фосфора.Самыми популярными фосфорными антипиренами являются фосфорная кислота и соли моно- и диаммонийфосфата. Кроме того, можно учитывать фосфатно-азотные соли, содержащие органические соединения (Stevens et al. 2006). Поэтому в целом фосфорные антипирены делятся на три категории: содержащие неорганические, органические и галогенные компоненты. Их механизм работает в большинстве случаев в твердых фазах горящего материала, но он может быть активен и в газовой фазе (Van der Veen and de Boer 2012).Соединения фосфора эффективны в качестве антипиренов, поскольку они уменьшают термическое разложение древесины (Jiang et al. 2010). Фосфорные химические вещества действуют как антипирены путем образования кислот, которые снижают температуру древесины (Wu et al. 2002) и, как следствие, увеличивают ее обезвоживание и обугливание (Liu 2001; Gao et al. 2006). Уголь действует как барьер для кислорода и летучих горючих компонентов (ЛОС).

Гидроксид магния является интересным антипиреном и выделяется среди многих химических продуктов, поскольку он безвреден для окружающей среды, имеет низкую цену, низкую токсичность, коррозионную активность и обладает способностью подавлять дым (Zhang et al. 2016). При температуре около 300 ° C гидроксид магния разлагается до гидроксида магния с выделением водяного пара, влияя на полимерную систему (Rothon and Hornsby 1996). В 2017 году было проведено новое исследование термического разложения наногидроксида магния (Yang et al. 2017). Водяной пар выделяется во время разложения, поэтому гидроксид магния действует как антипирен, поскольку он создает слой, изолирующий материал от пламени (Zhu et al. 2016).

Бор, который можно рассматривать как класс экологически чистых материалов (El-Batal et al. 2019), используется в различных областях, таких как сельское хозяйство, производство стекловолокна или обработка материалов, но, что наиболее важно, в огнезащитных целях. (Саян и др. 2010). Соединения бора — лучший выбор в качестве антипиренов для целлюлозных материалов. На протяжении многих лет проводились исследования, показывающие эффективность соединений бора в качестве антипиренов. В большинстве случаев используются два вида: бура и борная кислота.Эти два соединения эффективны как антипирены на поверхности древесины. В большинстве случаев бура и борная кислота используются вместе, потому что они дополняют друг друга. Преимущество буры заключается в подавлении распространения пламени, но недостатком является то, что бура способствует тлеению. С другой стороны, борная кислота является хорошим подавителем тления, но ее способность подавлять распространение пламени невысока (Baysal et al. 2007).

Поскольку каждая предварительная обработка антипиренами по-разному влияет на разные породы древесины, не только тип антипирена, но и его дозировка будут иметь большое влияние на результат.Brahmia и др. . (2020) изучали действие различных антипиренов соединений бора и фосфора с разной концентрацией на тополь и сосну обыкновенную. Использовали бура с концентрацией 25 г / л, диаммоний гидрофосфат с концентрацией 25 г / л и 300 г / л и гидрофосфат динатрия с концентрацией 25 г / л и 77 г / л. Результаты показали, что соединения фосфора обладают лучшими характеристиками, чем бура, особенно при использовании с тополем. Концентрация имеет большое влияние на характеристики огнестойкости, более высокая концентрация дает более высокую огнестойкость.Для достижения лучших результатов рекомендуется использовать антипирены в высоких дозах, но в случае композитов с цементной древесиной должна быть сбалансированная дозировка антипиренов, и необходимо учитывать их влияние на отверждение цементной древесины.

ВЫВОДЫ

  1. Цементно-древесные композиты (CWC) — это непредсказуемые строительные материалы, на которые влияет множество факторов. Наиболее важным фактором при производстве CWC является совместимость древесины и цемента. Порода древесины является наиболее важным фактором совместимости цемента с древесиной, потому что не все породы имеют одинаковый вид и количество экстрактивных веществ.На это влияет не только порода древесины, но и время оседания, старение и хранение, потому что эти факторы могут влиять на экстрактивные вещества в древесине.
  2. Предварительная обработка древесины использовалась для уменьшения содержания экстрактивных веществ или ингибиторов цемента во многих исследованиях. Наиболее часто применяемой предварительной обработкой древесины были горячая и холодная вода, гидроксид натрия, гидроксид кальция, отбеливатель и щелочной гидролиз. Эти предварительные обработки могут изменить совместимость цементной древесины с несовместимой на подходящую.Из-за требований и правил CWC находится в постоянном развитии.
  3. Механические свойства и сокращение времени отверждения являются наиболее важными аспектами, на которых сосредоточили внимание исследователи. Обычно механические свойства улучшаются за счет использования различных добавок, таких как хлорид кальция и силикат натрия. Для уменьшения времени отверждения CWC широко используется диоксид углерода (CO 2 ). Он не только сокращает время отверждения, но также улучшает механические свойства и водопоглощение.
  4. Несколько исследовательских проектов изучали огнестойкость CWC, и они в основном были сосредоточены на демонстрации того, что CWC с подходящей формулой являются негорючими материалами. Исследования также показали влияние различных добавок на термическую стабильность материала. Тем не менее, огнестойкость CWC требует улучшения. Решением может стать предварительная обработка антипиренами. Однако используемые антипирены не должны влиять на основные свойства, такие как механические характеристики.Кроме того, применяемые антипирены должны быть экологически чистыми, чтобы не причинять вред людям. Они также должны быть дешевыми, потому что CWC должна оставаться в рамках бюджета. Известными антипиренами для древесины, которые потенциально могут использоваться в качестве средств предварительной обработки, являются соединения фосфора, бора и магния.

БЛАГОДАРНОСТЬ

Авторы выражают благодарность профессору Ковачу Жолту за вычитку рукописи. Эта статья была сделана в рамках «EFOP-3.6.1-16-2016-00018 — Повышение роли исследований + разработок + инноваций в высшем образовании посредством институциональных разработок, способствующих интеллектуальной специализации в Шопроне и Сомбатхей.”

Авторы также заявляют об отсутствии конфликта интересов.

ССЫЛКИ

Абдельрахман, А. Б., Парич, М. Т., Шах Уид, М., Абдул Самад, А. Р., и Ахмед Абдаллах, А. М. (2015). «Влияние предварительной обработки, соотношения древесины и цемента и частичной замены цемента гипсом на древесные композиты Prosopis chilensis », European Journal of Wood and Wood Products 73 (4), 557-559. DOI: 10.1007 / s00107-015-0909-x

Аль-Мефаррей, Х.А. (2009). «Тестирование и повышение совместимости пяти саудовских пород древесины для производства цементно-стружечных плит», Alexandria Science Exchange Journal 30 (3), 333-342.

Альпар, Л., Т., Павлекович, А., Чока, Л., и Хорват, Л. (2011). «Древесноволокнистые цементные плиты, изготовленные с использованием наноминералов», Международная научная конференция по обработке древесины твердых пород (ISCHP2011), , 75-82.

Альпар, Л. Т., Селмеци, Э., и Чока Л. (2012). «Улучшенная совместимость древесного цемента с наноминералами», Международная научная конференция по устойчивому развитию и экологическому следу , 1-7.

Альпар, Л. Т., Такатс, П., и Хатано, Ю. (2003). «Пористость цементно-стружечных плит, отвержденных впрыском CO 2 и отвержденных гидратацией», JARQ 37 (4), 263-268.

Антиви-Боасиако, К., Офосухене, Л., и Боаду, К. Б. (2018). «Пригодность опилок трех тропических пород древесины для древесно-цементных композитов», Journal of Sustainable Forestry 37 (4), 414-428. DOI: 10.1080 / 10549811.2018.1427112

Ашори А., Табарса Т., Азизи Х., и Мирзабейги Р. (2011). «Древесноволокнистая цементная плита из смеси эвкалипта и тополя», Промышленные культуры и продукты 34 (1), 1146-1149. DOI: 10.1016 / j.indcrop.2011.03.033

Ашори А., Табарса Т. и Амоси Ф. (2012a). «Оценка использования деревянных шпал в древесно-цементных композиционных материалах», Строительные материалы 126-129. DOI: 10.1016 / j.conbuildmat.2011.08.016.

Ашори А., Табарса Т. и Сепахванд С. (2012b).«Цементно-композитные плиты из тополя», Строительные и строительные материалы 26 (1), 131-134. DOI: 10.1016 / j.conbuildmat.2011.06.001

Айрилмис, Н., Дундар, Т., Кандан, З., , и Акбулут, Т. (2009). «Смачиваемость ламинированного бруса, обработанного антипиреном (LVL), изготовленного из шпона, высушенного при различных температурах», BioResources 4 (4), 1536-1544. DOI: 10.15376 / biores.4.4.1536-1544

Байсал, Э., Ялинкилыч, М.К., Аалтинок, М., Сонмез, А., Пекер, Х., и Колак, М. (2007). «Некоторые физические, биологические, механические и огнестойкие свойства древесно-полимерного композита (ДПК), предварительно обработанного борной кислотой и смесью буры», Construction and Building Materials 21 (9), 1879-1885. DOI: 10.1016 / j.conbuildmat.2006.05.026.

Бежо, Л., и Такатс, П. (2005). «Разработка композитных балок на цементной связке», Acta Silvatica Et Lignaria Hungarica 1, 111-119.

Боаду, К. Б., Антви-Боасиако, К., и Ofosuhene, L. (2018). «Экстракция ингибирующих веществ из трех твердых пород древесины разной плотности и их совместимость с цементом при производстве композитов», журнал Индийской академии наук о древесине, 15 (2), 140-148. DOI: 10.1007 / s13196-018-0219-0.

Brahmia, F. Z., Alpár, T., Horváth, P. G., and Csiha, C. (2020). «Сравнительный анализ смачиваемости антипиренами тополя ( Populus cv. euramericana I214) и сосны обыкновенной ( Pinus sylvestris )», Surfaces and Interfaces 18, 100405.

Буллард, Дж. У., Дженнингс, Х. М., Ливингстон, Р. А., Нонат, А., Шерер, Г. У., Швейцер, Дж. С., Скривенер, К. Л., и Томас, Дж. Дж. (2011). «Механизмы гидратации цемента», Исследование цемента и бетона, 41 (12), 1208-1223. DOI: 10.1016 / j.cemconres.2010.09.011.

Чехин, Л., Матоски, А., Миранд-а-де-Лима, А., Моник, А., и Бассо, Р. (2018). «Влияние обработок на совместимость портландцемента с высокой начальной прочностью и мохового бамбука», Revista Ingenieria de Construction 33 (2), 127-136.

Деплаз, А. (2005). «Конструирование архитектурных материалов обрабатывает структуры», Бихаузер — Издательство по архитектуре , 60-112.

Эль-Батал, А. И., Эль-Сайяд, Г. С., Аль-Хазми, Н. Э., и Гобара, М. (2019). «Антибиотикопленка и антимикробная активность наночастиц бора серебра, синтезированных полимером ПВП и гамма-лучами, против патогенов мочевыводящих путей», Journal of Cluster Science , 30 (4), 947-964.

Вентилятор, м., Надиконтар, м.К., Чжоу, X., и Нгамвенг, Дж. Н. (2012). «Цементные композиты из тропической древесины: совместимость дерева и цемента», Строительные материалы 36, 135-140. DOI: 10.1016 / j.conbuildmat.2012.04.089.

Ферраз, Дж. М., Дель Менецци, К. Х. С., Сарза, М. Р., Окино, Э. Ю., и Мартинц, С. А. (2012). «Совместимость предварительно обработанных волокон кокосового волокна ( Cocos nucifera L.) с портландцементом для производства минеральных композитов», International Journal of Polymer Science 2012, 1-15.DOI: 10.1155 / 2012/2

Фриборт, С., Мортиз, Р., Тейшингер, А., Мюллер, У. (2008). «Цементные композиты — механический обзор», BioResources 3 (2), 602-626. DOI: 10.15376 / biores.3.2.602-626

Гао, Ф., Тонг, Л. и Фанг, З. (2006). «Влияние нового фосфор-азотсодержащего вспучивающегося антипирена на огнестойкость и термическое поведение поли (бутилентерефталата)», Разложение и стабильность полимера 91 (6), 1295-1299.DOI: 10.1016 / j.polymdegradstab.2005.08.013

Гастро В., Арауджо Р. Д., Парчен К. и Ивакири С. (2014). «Оценка эффекта предварительной обработки древесины эвкалипта benthami maiden и камбейджа на степень совместимости с портландцементом», Revista Arvore 35 (5), 935-942.

Гастро В., Да роза Р., Замбуджа А., Била Н. Ф., Парчен К. Ф. А., Саассаки Г. И. и Ивкири С. (2018). «Взаимосвязь между химическим составом тропических твердых пород древесины и совместимостью древесного цемента», Журнал химии и технологии древесины 38 (1), 28-34.DOI: 10.1080 / 02773813.2017.1355390

Гастро, В., Замбуджа, Р. Д. Р., Парчен, К. Ф. А., и Ивакири, С. (2019). «Альтернативная вибродинамическая компрессионная обработка древесно-цементных композитов с использованием амазонской древесины», Acta Amazonia 49 (1), 75-80.

Гундуз, Л., Калкан, С. О., Искер, А. М. (2018). «Влияние использования цементно-стружечных плит с композитным компонентом с точки зрения акустических характеристик в наружных шумозащитных ограждениях», The Eurasia Proceedings of Science Technology Engineering and Mathematics (4), 246-255.

Ханнант, Д. Дж., Венката, С. Б., Сивер и Срикант, П. С. Р. (2018). «5.15 Композиты на основе цемента», Комплексные композитные материалы II 5, 379-420.

Хассан, М.С., Салих, С.А., и Али, И.М. (2016). «Оценка прочности цементных плит из целлюлозы финиковой пальмы, отверждаемых CO2, армированных волокном», Eng. и Тех. Журнал 34, 1029-1046.

Хиллерборг А., Модеер М. и Петерссон П. Э. (1976). «Анализ образования и роста трещин в бетоне с помощью механики разрушения и конечных элементов», Cement and Concrete Research 6 (6), 773-781.DOI: 10.1016 / 0008-8846 (76)

-7.

Цзян Д., Цуй С., Сюй Ф. и Туо Т. (2015). «Влияние методов модификации листового волокна на совместимость между листовым волокном и материалами на основе цемента», Construction and Building Materials 94, 502-512. DOI: 10.1016 / j.conbuildmat.2015.07.045

Jiang, J., , Li, J., Hu, J., и , Fan, D. (2010). «Влияние азотно-фосфорных антипиренов на термическое разложение древесины», Строительные материалы 24 (12), 2633-2637.DOI: 10.1016 / j.conbuildmat.2010.04.064

Хорхе, Ф. К., Перейра, К., и Феррейра, Дж. М. Ф. (2004). «Древесно-цементные композиты: обзор», Holz als Roh — und Werkstoff 62 (5), 370-377. DOI: 10.1007 / s00107-004-0501-2

Караде, С. Р. (2010). «Цементные композиты из лигноцеллюлозных отходов», Строительные материалы 24 (8), 1323-1330. DOI: 10.1016 / j.conbuildmat.2010.02.003

Кохова К., Капри В., Говен Ф. и Шольбах К.(2020). «Исследование локальной деградации древесных насаждений и ее влияния на цементные древесные композиты», Строительные материалы 231, 117201. DOI: 10.1016 / j.conbuildmat.2019.117201

Кохова К., Шоллбах К., Говен Ф. и Брауэрс Х. Дж. Х. (2017). «Влияние сахаридов на гидратацию обычного портландцемента», Construction and Building Materials 150, 268-275. DOI: 10.1016 / j.conbuildmat.2017.05.149

Кохестани, Б., Коубаа, А., Белен, Т., Бюссьер, Б., и Бузаза, Х. (2016). «Экспериментальное исследование механических и микроструктурных свойств засыпки из цементной пасты, содержащей кленовый наполнитель», Строительные материалы 121, 222-228. DOI: 10.1016 / j.conbuildmat.2016.05.118

Косматка, С. Х., Керкхофф, Б. и Панарезе, В. К. (2008). «Проектирование и контроль проектирования и контроля бетонной смеси», Технический бюллетень 001, 1-228.

Леван, С.Л., Росс, Р.Дж. И Винанди, Дж. Э. (1990). Влияние огнестойких химикатов на свойства древесины при изгибе при повышенных температурах , Министерство сельского хозяйства США, Лаборатория лесных продуктов, Мэдисон, Висконсин, США.

Лян, З. Ф., Ян, Б., Ван, Л., Чжан, X,, Чжан, Л., и Хэ, Н. (2014). «Развитие гибкой модели нейтрального дерева для процесса гидратации портландцемента», Advances in Swarn Intelligence 302-309.

Лю, Ю. Л. (2001). «Огнестойкие эпоксидные смолы из нового фосфорсодержащего новолака», Polymer 42 (8), 3445-3454.DOI: 10.1016 / S0032-3861 (00) 00717-5

Maail, R. S. (2013). «Анализ разложения при производстве цементно-стружечных плит с использованием сверхкритического CO 2 », Wood Research Journal 4 (2), 76-82.

Маил Р. С., Умемура К., Айзава Х. и Канаи С. (2011). «Процессы отверждения и разрушения цементно-стружечных плит при сверхкритической обработке CO 2 », журнал Journal of Wood Science 57 (4), 302-307. DOI: 10.1007 / s10086-011-1179-9

Махзабин, С., Хамид, Р., Бадаруззаман, У. Х. У. (2013). «Оценка свойств матрицы древесно-волокнистого цемента, содержащих химические вещества», Journal of Engineering Science and Technology 8 (4), 385-398.

Маковинг И. (2010). «Микроволновая сушка древесно-цементных композитов», Wood Research 55 (2), 115-124.

Мэллони, Т. М. (1989). «Композиционные картонные материалы: свойства и испытания современных древесно-стружечных плит и древесноволокнистых плит сухого производства», Производство 120-128.

Маркос-Мезон, В., Мишель, А., Солгаард, А., Фишер, Г., Эдвардсен, К., Сковхус, Т. Л. (2018). «Коррозионная стойкость бетона, армированного стальной фиброй — Обзор литературы», Cement and Concrete Research 1-20. DOI: 10.1016 / j.cemconres.2017.05.016

Marteinsson, B., и Gudmundsson, E. (2018). «Цементно-стружечные плиты с различными типами натуральных волокон — с использованием впрыска углекислого газа для увеличения начального сцепления», Open Journal of Composite Materials 8 (1), 28-42.DOI: 10.4236 / ojcm.2018.81003

Матоски А., Хара М. М., Ивакири С. и Касаби Дж. М. (2013). «Uso de aditivos aceleradores em painéis de cimento-madeira: Características e propriedades», Acta Scientiarum — Technology 35 (4), 655-660. DOI: 10.4025 / actascitechnol.v35i4.11261

Медина, Л. А., Шледевский, Р. (2009). «Жидкое стекло как гидрофобная и антипиреновая добавка для композитов, армированных натуральным волокном», Журнал наноструктурированных полимеров и нанокомпозитов 5 (4), 107-114.

Медвед, С., Резник, Дж. (2003). «Влияние крупности бука, используемого в поверхностном слое, на прочность на изгиб трехслойной ДСП», Зборник Гоздарства в Лесарстве , 72, 197-207.

Мохаммед А., Абдаллах А. и Ясин Абдельгадир А. (2016). «Влияние соотношения цемент / древесина и размера частиц на некоторые свойства древесно-цементных заполнителей acaci nilotica», Sudan Silva 12 (i), 41-52.

Мохаммед С. и Сафиулла О. (2018). «Оптимизация содержания SO 3 в алжирском портландцементе: исследование влияния различных количеств гипса на свойства цемента», Construction and Building Materials 164, 362-370.DOI: 10.1016 / j.conbuildmat.2017.12.218

Мослеми А.А. и Пфистер С.С. (1986). «Влияние соотношения цемент / древесина и типа цемента на прочность на изгиб и стабильность размеров древесно-цементных композитных панелей», Wood and Fiber Science 19 (2), 165-175.

На, Б., Ван, З., Ван, Х., Лу, X. (2014). «Обзор совместимости древесины и цемента», Wood Research 59 (5), 813-826.

Насер, Р. А., и Аль-Мефаррей, Х. А. (2011). «Средние жилки финиковой пальмы как сырье для производства древесно-цементных композитов в Саудовской Аравии», World Applied Science Journal 5 (12), 1651-1658.

Насер, Р. А., Салем, М. З. М., Аль-Меферрей, Х. А., Ареф, И. М. (2016). «Использование отходов обрезки деревьев для производства древесно-цементных композитов», Цементные и бетонные композиты, 72, 246-256. DOI: 10.1016 / j.cemconcomp.2016.06.008

Назериан М., Садегийпанах В. (2013). «Цементно-стружечная плита из смеси пшеничной соломы и древесины тополя», Journal of Forestry Research 24 (2), 381-390. DOI: 10.1007 / s11676-013-0363-8

Пападопулос, А.Н. (2009). «Физико-механические свойства и стойкость против базидиомицетов древесно-стружечных плит из цемента и древесных частиц Carpinus betulus L.», Wood Research 54 (2), 95-100.

Паска С. А., Хартли И. Д., Рид М. Э. и Тринг Р. В. (2010). «Оценка совместимости древесины сосны ложняковой ( Pinus contorta var. Latifolia) с портландцементом», Материалы 3 (12), 5311-5319. DOI: 10.3390 / ma3125311

Филлипс, Д.Р. и Хсе, К. Ю. (1987). «Влияние соотношения цемент / древесина и условий хранения древесины на температуру гидратации, время гидратации и прочность на сжатие древесно-цементных смесей», Wood and Fiber Science 19 (3), 262-268.

Ци, Х., Купер, П. А., Хутон, Д. (2010). «Исследование основных процессов быстро затвердевающей древесно-цементно-водной смеси с CO 2 », European Journal of Wood and Wood Products 68 (1), 35-41. DOI: 10.1007 / s00107-009-0351-z

Кирога, А., Марзокки В., Ринтул И. (2016). «Влияние обработки древесины на механические свойства древесно-цементных композитов и древесных волокон Populus Euroamericana », Composites Part B: Engineering 84, 25-32. DOI: 10.1016 / j.compositesb.2015.08.069

Ротон Р. Н. и Хорнсби П. Р. (1996). «Огнезащитные эффекты гидроксида магния», Разложение и стабильность полимера 54 (2-3 SPEC. ISS.), 383-385. DOI: 10.1016 / s0141-3910 (96) 00067-5

Саваль, Дж.М., Лапуента, Р., Наварро, В., и Тенза-Абрил, А. Дж. (2014). «Огнестойкость, физико-механические характеристики древесностружечных плит, содержащих океанические отходы Posidonia», Mater. Построить. 64, 314. DOI: 10.3989 / mc.2014.01413

Саян, П., Саргут, С. Т., Киран, Б. (2010). «Влияние примесей на микротвердость декагидрата буры», Powder Technology 197 (3), 254-259. DOI: 10.1016 / j.powtec.2009.09.025

Сораушиан П., Ван Дж. П. и Хассан М.(2012). «Характеристики долговечности отверждаемых CO 2 целлюлозно-волокнистых цементных композитов», Строительные материалы 34, 44-53. DOI: 10.1016 / j.conbuildmat.2012.02.016

Сорушян П., Вон Дж. П. и Хассан М. (2013). «Анализ прочности и микроструктуры цементно-стружечных плит, отверждаемых при помощи CO2», Цементно-бетонные композиты, 41, 34-44. DOI: 10.1016 / j.cemconcomp.2013.04.014

Сотаннде, А., Олвадаре, А.О., Огедох, О., и Адеогун, П. Ф. (2012). «Оценка цементно-стружечных плит, полученных из древесных остатков Afzelia africana, », Journal of Engineering Science and Technology 7 (6), 732-743.

Стивенс, Р. ван Эс, Д. С., Беземер, Р. К., и Краненбарг, А. (2006). «Взаимосвязь между структурой и активностью огнестойких фосфорных соединений в древесине», Разложение и стабильность полимеров 91 (4), 832-841. DOI: 10.1016 / j.polymdegradstab.2005.06.014

Стокке, Д.Д., Ву, К., и Хан, Г. (2013). «Введение в композиты из дерева и натурального волокна», серия Wiley в Renewable Resources, Бельгия, 225-226.

Табарса Т., Ашори А. (2011). «Стабильность размеров и свойства водопоглощения цементно-древесных композитов», журнал , посвященный полимерам и окружающей среде, 19 (2), 518-521. DOI: 10.1007 / s10924-011-0295-3

Таскирвати, И., Сануси, Д., Бахарудин, Б., Агуссалим, А., и Сухасман, С. (2019). «Характеристики цементной плиты с CO 2 методом впрыска и добавлением CaCl2 в качестве добавки с использованием двух пород древесины из общинных лесов», IOP Conference Series: Earth and Environmental Science 270 (1).DOI: 10.1088 / 1755-1315 / 270/1/012055

Вайкеллионис, Г., Вайкеллионис, Р. (2006). «Гидратация цемента в присутствии экстрактивных веществ древесины и минеральных добавок пуццолана», Ceramics-Silikáty 50 (2), 115-122

Ван дер Вин, И. и де Бур, Дж. (2012). «Фосфорные антипирены: свойства, производство, наличие в окружающей среде, токсичность и анализ», Chemosphere 88 (10), 1119-1153. DOI: 10.1016 / j.chemosphere.2012.03.067

Ван, Л., Чен, С.С., Цанг, Д. К. У., Пун, С. С., Дай, Дж. Г. (2017a). «Отверждение CO2 и армирование волокном для экологически чистой переработки загрязненной древесины в высокоэффективные цементно-стружечные плиты», Journal of CO 2 Utilization 18, 107-116. DOI: 10.1016 / j.jcou.2017.01.018

Ван, Л., Ю, И. К. М., Цанг, Д. К. У., Ли, С., Ли, Дж., Пун, К. С., Ван, Ю. С., и Дай, Дж. Г. (2017b). «Преобразование древесных отходов в водостойкие магнезиально-фосфатно-цементные плиты, модифицированные глиноземом и красным шламом», Journal of Cleaner Production 452-462.DOI: 10.1016 / j.jclepro.2017.09.038

Wang, L., Yu, IKM, Tsang, DCW, Yu, K., Li, S., Poon, CS, and Dai, JG (2018). «Переработка древесных отходов в армированные волокном магниево-фосфатно-цементные плиты», Строительные материалы 159, 54-63. DOI: 10.1016 / j.conbuildmat.2017.10.107

Ван Х., Ю. Ю. (2012). «Совместимость двух распространенных быстрорастущих видов с портландцементом». Журнал Индийской академии наук о дереве , 9 (2), 154-159.

Вэй, Ю. М., Гуан Чжоу, Ю., и Томита, Б. (2000). «Гидратационные свойства древесного композита на основе цемента I: оценка влияния пород древесины на совместимость и прочность с обычным портландцементом», Journal of Wood Science 46 (4), 296-302. DOI: 10.1007 / BF00766220

Ву, С.С., Лю, Ю.Л. и Чиу, Ю.С. (2002). «Эпоксидные смолы, содержащие антипиреновые элементы из эпоксидных соединений с кремнием, отвержденных фосфором или азотсодержащими отвердителями», Polymer 43 (15), 4277-4284.DOI: 10.1016 / S0032-3861 (02) 00234-3

Вульф Ф., Шульц К., Брозель Л. и Пфриэм А. (2015). «Armirani beton s Mineraliziranim česticama drva kao element za ukrućenje smanjene gustoće», Drvna Industrija 66 (1), 57-62. DOI: 10.5552 / drind.2015.1345

Xie, X., Gou, G., Zhou, Z., Jiang, M., Xu, X., Wang, Z., and Hui, D. (2016). «Влияние предварительной обработки рисовой соломы на гидратацию композитов на основе цемента с наполнителем из соломенного волокна», Строительные материалы 113, 449-455.DOI: 10.1016 / j.conbuildmat.2016.03.088

Ян В., Чжу З., Ши Дж., Чжао Б., Чен З. и Ву Ю. (2017). «Характеристики термического разложения наногидроксида магния с помощью спектроскопии времени жизни аннигиляции позитронов», Powder Technology 311, 206-212. DOI: 10.1016 / j.powtec.2017.01.059

Zhang, K., and Sun, Q. (2018). «Использование композита проволочная сетка-полиуретановый цемент (WM-PUC) для упрочнения Т-образных балок при изгибе», журнал Строительная инженерия, 122-136.DOI: 10.1016 / j.jobe.2017.11.008

Чжан Т., Лю В., Ван М., Лю П., Пань Ю. и Лю Д. (2016). «Синергетический эффект производного ароматической бороновой кислоты и гидроксида магния на огнестойкость эпоксидной смолы», Разложение и стабильность полимера 130, 257-263. DOI: 10.1016 / j.polymdegradstab.2016.06.011

Чжан, X., Ван, Л., Чжан, Дж., Ма, Ю., и Луи, Ю. (2017). «Поведение при изгибе склеенных бетонных балок после натяжения при прядной коррозии», Nuclear Engineering and Design 313, 414-424.DOI: 10.1016 / j.nucengdes.2017.01.004

Чжуа Д., Найя X., Лан С., Биан С., Лю X. и Ли В. (2016). «Модификация поверхности нитевидных кристаллов гидроксида сульфата магния с использованием силанового связующего агента сухим способом», Applied Surface Science 390, 25-30. DOI: 10.1016 / j.apsusc.2016.08.033

Цзо, Ю., Сяо, Дж., Ван, Дж., Лю, В., Ли, X. и Ван, Ю. (2018). «Приготовление и определение характеристик огнестойких композитов из соломы / магниевого цемента с органо-неорганической металлической структурой», Строительные материалы 171, 404-413.DOI: 10.1016 / j.conbuildmat.2018.03.111

Статья подана: 9 марта 2020 г .; Рецензирование завершено: 24 мая 2020 г .; Доработанная версия получена: 22 июня 2020 г .; Принята в печать: 27 июня 2020 г .; Опубликовано: 1 июля 2020 г.

DOI: 10.15376 / biores.15.3.Brahmia

Виды композитных строительных материалов

Различные типы, характеристики и как выбрать лучшее для ваших строительных проектов

Что приходит на ум, когда вы слышите слово «лето»? Возможно солнце, отпуск или жара.А как насчет «композитного»? Может быть, настил, патио, материал? Хотя это правда, что одним из наиболее распространенных материалов для настилов является «композит», но этот термин относится к классу строительных материалов, который включает в себя множество различных продуктов. Хотя обычно это связано с настилом, о различных типах композитных материалов нужно знать гораздо больше.

Что такое композитный строительный материал?

Композит — это материал, созданный из двух или более материалов, которые имеют разные физические или химические свойства.Это приобретает характеристики комбинированных материалов для создания высококачественного строительного материала. Имея это в виду, есть много типов композитных материалов, которые следует учитывать для вашего проекта. Некоторые распространенные композиции включают:

Композит — Примеры композитных строительных материалов включают бетон, армированный пластик, цемент, железобетон и композитные деревянные балки. Эти материалы обычно прочные и прочные.

Армированные пластмассы — Это тип пластмассы, армированный волокнистым материалом, который может включать стекловолокно, дерево и другие материалы.Эту категорию также можно разбить на подмножества, которые классифицируются по матрице пластика (из какого пластика сделано изделие).

  • Thermoset — Во время процесса отверждения (процесса нагрева, при котором смола превращается в полимер) полимеры сшиваются вместе, что создает необратимую химическую связь. Это означает, что при нагревании его нельзя переплавить, не потеряв своих химических свойств. Этот продукт обладает высокой термостойкостью и прочностью. Примерами термореактивных пластиков являются детали автомобилей из углеродного волокна, автомобильные шины или шланги со стальной оплеткой, корпуса лодок из стекловолокна, решетки из стекловолокна и арматура из стекловолокна.
  • Термопласт — Армированный термопласт проходит другой процесс отверждения, при котором не происходит химической связи, что позволяет повторно формовать термопласт, не влияя на физические свойства материала. Этот продукт очень прочный и обладает высокой ударопрочностью. Чтобы еще больше разобраться, вот два типа армированных термопластов:
    • Органическое / натуральное волокно — Этот материал включает древесно-пластиковый композит (ДПК), в котором используются органические армирующие материалы, такие как древесное волокно / мука (включая опилки).Хотя этот материал обычно можно найти в мега магазинах товаров для дома, он со временем может разрушаться или портиться из-за влаги и ультрафиолетового излучения.
    • Неорганические — Неорганические термопласты часто армируют стекловолокном или металлом. Эти строительные материалы обычно не испытывают такого же ухудшения окружающей среды, как термопласт, армированный органическими волокнами, из-за долговечности армированных материалов.

Теперь, когда вы лучше понимаете композитные строительные материалы, давайте глубже погрузимся в характеристики различных пластиковых композитов и некоторые соображения при выборе правильного строительного материала для вашего конкретного проекта.

Поливинилхлорид (ПВХ)

ПВХ при использовании в качестве материала для настила представляет собой композитный строительный материал, который имеет гибкие возможности дизайна. Он может быть изготовлен так, чтобы он выглядел как натуральное дерево, и хотя естественный цвет белый, он бывает многих цветов и чаще всего используется в ограждениях и настилах. Это прочный продукт, потому что он устойчив к насекомым и гниению. Он также нелегко отслаивается и не отслаивается.

ПВХ — хороший вариант для некоторых проектов, но не для всех.ПВХ от природы белый, но в проектах по укладке настилов он часто окрашивается тонкой оберткой или оболочкой поверх композитного материала, поэтому он имеет тенденцию выцветать при длительном контакте с ультрафиолетовым светом. Еще одно соображение заключается в том, что часто ПВХ смешивают с другими материалами, такими как древесные волокна (опилки) или наполнители, что снижает структурные свойства пластика. К тому же это не очень экологично. При производстве и сжигании этого продукта в воздух выбрасываются диоксины, которые представляют собой очень вредное соединение для людей, дикой природы и окружающей среды.

Полиэтилен низкой плотности (LDPE)

LDPE — прочный материал, который используется на рынке ландшафтного дизайна, парков и отдыха, но используется реже, чем PVC и HDPE. Чаще всего он используется в качестве альтернативы традиционным пиломатериалам для настилов и тротуаров. LDPE имеет меньшую массу, чем другие пластиковые пиломатериалы, поэтому он легче и обычно смешивается с натуральными волокнами, такими как дерево, для производства прочного строительного материала.

Этот продукт прочен в том смысле, что он устойчив к гниению и выдерживает экстремальные погодные условия.Хотя этот продукт более экологичен, чем ПВХ, из-за низкой плотности ПЭНП не так прочен, как другие материалы. Прочность на растяжение ниже, поэтому у него больше шансов сломаться при большом растяжении. Это может ограничить области применения, для которых этот продукт лучше всего подходит.

Полиэтилен высокой плотности (HDPE) С другой стороны,

HDPE очень прочный и прочный. Строительные материалы HDPE изготавливаются из переработанных молочных кувшинов, бутылок для стиральных порошков и могут быть смешаны с стекловолокном или армированной стекловолокном арматурой для дополнительной прочности и структурной целостности.Как и ПВХ, он не трескается и не отслаивается, устойчив к влаге, насекомым и гниению.

Полиэтилен высокой плотности

не нужно красить, окрашивать или химически обрабатывать, а окрашивание передается по всему изделию. Он также обладает высокой прочностью на разрыв, чтобы выдерживать большие нагрузки. Еще одно преимущество использования HDPE от Bedford Technology заключается в том, что наши продукты являются экологически чистыми и соответствуют критериям строительных баллов LEED.

Дополнительные ресурсы:

Может быть непросто решить, какой строительный материал из ПНД является лучшим решением! Ниже приведена дополнительная информация о линейках продуктов Bedford Technology, которая поможет вам найти правильный композитный строительный материал для вашего конкретного применения.

SelectForce® от Bedford Technology

FiberForce® от Bedford Technology

BarForce® от Bedford Technology

SeaPile® / SeaTimber® от Bedford Technology

Библиотека документов

Готовы начать?

Свяжитесь с нами сегодня!

Деревянный бетон, модифицированный измельченным доменным шлаком, гранулированный

Аннотация:

Возрастающие требования к физико-механическим свойствам строительных материалов дают толчок к созданию и совершенствованию новых высокоэффективных строительных материалов, в том числе шлакосиликатного древесно-стружечного бетона. Объект исследования — древесно-стружечные бетонные материалы с высокими эксплуатационными характеристиками, полученные с использованием модифицированных шлакосиликатных вяжущих. На первом этапе работы были изучены физико-механические свойства мелкодисперсного гранулированного доменного шлака и древесной щепы. Методы: Фазовый состав мелкодисперсного гранулированного доменного шлака определен методом рентгенофазового анализа. Также микроструктура образца измельченного гранулированного доменного шлака была исследована с помощью электронно-микроскопического анализа. Результатов: Установлено, что шлак состоит из кристаллической и аморфной фаз. Содержание наиболее активной аморфной фазы находится на уровне 59,8%. Также был определен химический состав образца измельченного шлака. В результате получен элементный состав измельченного шлака. В частности, определен коэффициент основности шлака, значение которого равно 1,04. В ходе эксперимента было установлено, что шлак в основном состоит из крупных утолщенных частиц неправильной формы и их агрегатов, диаметр которых составляет от долей микрон до нескольких микрон.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *